Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Angew Chem Int Ed Engl ; 62(6): e202214167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458817

RESUMEN

The synthesis of N-glycosides from stable glycosyl donors in a catalytic fashion is still challenging, though they exist ubiquitously in DNA, RNA, glycoproteins, and other biological molecules. Herein, silver-assisted gold-catalyzed activation of alkynyl glycosyl carbonate donors is shown to be a versatile approach for the synthesis of purine and pyrimidine nucleosides, asparagine glycosides and quinolin-2-one N-glycosides. Thus synthesized nucleosides were subjected to the oxidation-reduction sequence for the conversion of Ribf- into Araf- nucleosides, giving access to nucleosides that are otherwise difficult to synthesize. Furthermore, the protocol is demonstrated to be suitable for the synthesis of 2'-modified nucleosides in a facile manner. Direct attachment of an asparagine-containing dipeptide to the glucopyranose and subsequent extrapolation to afford the dipeptide disaccharide unit of chloroviruses is yet another facet of this endeavor.


Asunto(s)
Glicósidos , Nucleósidos , Glicósidos/química , Nucleósidos/química , Plata , Oro/química , Asparagina , Glicosilación , Catálisis
2.
Proc Natl Acad Sci U S A ; 116(6): 1958-1967, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670663

RESUMEN

Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.


Asunto(s)
Proteínas Portadoras/química , Análisis por Micromatrices/métodos , Polisacáridos/química , Polisacáridos/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Células CHO , Cricetulus , Glicómica , Humanos , Sistema Inmunológico , Lectinas , Oligosacáridos , Polisacáridos/clasificación , Unión Proteica , Proteínas Recombinantes , Especificidad de la Especie
3.
Chemistry ; 24(5): 1128-1139, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29072797

RESUMEN

Oligosaccharides are involved in a myriad of biological phenomena. Many glycobiological experiments can be undertaken if homogenous and well-defined oligosaccharides are accessible. Mycobacterial cell walls contain arabinogalactan as one of the major constituents that is challenging for chemical synthesis. Therefore, the major aim of this investigation is to synthesise a major oligosaccharide portion of the arabinogalactan. The pentacosafuranoside (25mer) synthesis involved installation of several arabinofuranosidic linkages through neighbouring group participation for 1,2-trans linkages and oxidation-reduction strategy for the 1,2-cis Araf. A strategically placed n-pentenyl moiety at the reducing end enables ligation of biomolecular probes through celebrated cross metathesis or thiol-ene click reactions. Several linear and branched oligosaccharides were synthesised ranging from trisaccharide to pentadecasaccharide during this endeavour. Synthesis of pentacosasaccharide was accomplished in 77 steps with 0.0012 % overall yield. These oligosaccharides are envisioned to be excellent probes for understanding disease biology thereby facilitating discovery of novel antitubercular agents, vaccines and/or diagnostics.


Asunto(s)
Antituberculosos/síntesis química , Galactanos/química , Glicósidos/síntesis química , Mycobacterium tuberculosis/química , Oligosacáridos/síntesis química , Polisacáridos Bacterianos/química , Antituberculosos/química , Pared Celular/química , Glicósidos/química , Glicosilación , Humanos , Oligosacáridos/química , Relación Estructura-Actividad
4.
Commun Chem ; 7(1): 73, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565709

RESUMEN

Post-synthetic surgical editing enables synthesizing diverse molecules from a common scaffold. Editing carbohydrates by inserting a foreign glycan is still a far-reaching goal for synthetic chemists. In this study, a one-pot-three-step chemical approach was employed to edit glycoconjugates. It is comprised of three steps: the first is a 'cut' step, cleaving one of the interglycosidic bonds and producing an intermediate that could be intercepted with 4-mercaptotoluene; second step activates the thiotolyl glycoside in the presence of an aglycon containing an orthogonally activatable ethynylcycloxyl carbonate moiety; and the third step involves 'stitching' by activating the carbonate donor. The cut-insert stitch-editing reaction (CIStER) is demonstrated by inserting branched and linear arabinans reminiscent of M. tuberculosis cell wall from the same designer trimannoside. Glycosylating an activated hydroxyacid (serinyl, steroidal, and lipid) after cutting the interglycosidic bond and stitching in the presence of base extendes the CIStER approach to the synthesis of glycohybrids.

5.
Nat Commun ; 8: 14019, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120821

RESUMEN

Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is essential for understanding the biosynthetic machinery that assembles it. Isolation from Nature is a herculean task and, as a result, chemical synthesis is the most sought after technique. Here we report a convergent synthesis of branched heneicosafuranosyl arabinogalactan (HAG) of MTb. Key furanosylations are performed using [Au]/[Ag] catalysts. The synthesis of HAG is achieved by the repetitive use of three reactions namely 1,2-trans furanoside synthesis by propargyl 1,2-orthoester donors, unmasking of silyl ether, and conversion of n-pentenyl furanosides into 1,2-orthoesters. Synthesis of HAG is achieved in 47 steps (with an overall yield of 0.09%) of which 21 are installation of furanosidic linkages in a stereoselective manner.


Asunto(s)
Pared Celular/química , Galactanos/síntesis química , Oro/química , Mycobacterium tuberculosis/química , Plata/química , Catálisis , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA