Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FEBS Lett ; 459(2): 154-8, 1999 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-10518010

RESUMEN

Six chimeras of the skeletal muscle (RyR1) and cardiac muscle (RyR2) Ca(2+) release channels (ryanodine receptors) previously used to identify RyR1 dihydropyridine receptor interactions [Nakai et al. (1998) J. Biol. Chem. 273, 13403] were expressed in HEK293 cells to assess their Ca(2+) dependence in [(3)H]ryanodine binding and single channel measurements. The results indicate that the C-terminal one-fourth has a major role in Ca(2+) activation and inactivation of RyR1. Further, our results show that replacement of RyR1 regions with corresponding RyR2 regions can result in loss and/or reduction of [(3)H]ryanodine binding affinity while maintaining channel activity.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Cultivadas , Humanos , Músculo Esquelético/citología , Proteínas Recombinantes de Fusión/metabolismo , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Tritio
2.
Ann N Y Acad Sci ; 853: 130-48, 1998 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-10603942

RESUMEN

Calcium release channels, known also as ryanodine receptors (RyRs), play an important role in Ca2+ signaling in muscle and nonmuscle cells by releasing Ca2+ from intracellular stores. Mammalian tissues express three different RyR isoforms comprising four 560-kDa (RyR polypeptide) and four 12-kDa (FK506 binding protein) subunits. The large protein complexes conduct monovalent and divalent cations and are capable of multiple interactions with other molecules. The latter include small diffusible endogenous effector molecules including Ca2+, Mg2+, adenine nucleotides, sufhydryl modifying reagents (glutathione, NO, and NO adducts) and lipid intermediates, and proteins such as protein kinases and phosphatases, calmodulin, immunophilins (FK506 binding proteins), and in skeletal muscle the dihydropyridine receptor. Because of their role in regulating intracellular Ca2+ levels and their multiple ligand interactions, RyRs constitute an important, potentially rich pharmacological target for controlling cellular functions. Exogenous effectors found to affect RyR function include ryanoids, toxins, xanthines, anthraquinones, phenol derivatives, adenosine and purinergic agonists and antagonists, NO donors, oxidizing reagents, dantrolene, local anesthetics, and polycationic reagents.


Asunto(s)
Corazón/fisiología , Músculo Esquelético/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Inmunofilinas/fisiología , Mamíferos , Isoformas de Proteínas/fisiología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Tacrolimus , Proteínas de Unión a Tacrolimus
3.
Am J Physiol ; 274(1): C120-8, 1998 01.
Artículo en Inglés | MEDLINE | ID: mdl-9458720

RESUMEN

The effects of mono- and divalent ions on Ca(2+)-gated cardiac muscle Ca(2+)-release channel (ryanodine receptor) activity were examined in [3H]ryanodine-binding measurements. Ca2+ bound with the highest apparent affinity to Ca2+ activation sites in choline chloride medium, followed by KCl, CsCl, NaCl, and LiCl media. The apparent Ca2+ binding affinities of Ca2+ inactivation sites were lower in choline chloride and CsCl media than in LiCl, NaCl, and KCl media. Sr2+ activated the ryanodine receptor with a lower efficacy than Ca2+. Competition studies indicated that Li+, K+, Mg2+, and Ba2+ compete with Ca2+ for Ca2+ activation sites. In 0.125 M KCl medium, the Ca2+ dependence of [3H]ryanodine binding was modified by 5 mM Mg2+ and 5 mM beta,gamma-methyleneadenosine 5'-triphosphate (a nonhydrolyzable ATP analog). The addition of 5 mM glutathione was without appreciable effect. Substitution of Cl- by 2-(N-morpholino)ethanesulfonic acid ion caused an increase in the apparent Ca2+ affinity of the Ca2+ inactivation sites, whereas an increase in KCl concentration had the opposite effect. These results suggest that cardiac muscle ryanodine receptor activity may be regulated by 1) competitive binding of mono- and divalent cations to Ca2+ activation sites, 2) binding of monovalent cations to Ca2+ inactivation sites, and 3) binding of anions to anion regulatory sites.


Asunto(s)
Calcio/metabolismo , Cationes Bivalentes/farmacología , Cationes Monovalentes/farmacología , Corazón/fisiología , Activación del Canal Iónico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , Animales , Perros , Activación del Canal Iónico/efectos de los fármacos , Cinética , Concentración Osmolar , Rianodina/metabolismo
4.
J Biol Chem ; 274(46): 32680-91, 1999 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-10551824

RESUMEN

The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.


Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Rojo de Rutenio/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Perros , Conductividad Eléctrica , Electrofisiología , Cinética , Unión Proteica/efectos de los fármacos , Proteolípidos/metabolismo , Conejos , Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
J Biol Chem ; 272(3): 1628-38, 1997 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-8999838

RESUMEN

The effects of ionic composition and strength on rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) activity were investigated in vesicle-45Ca2+ flux, single channel and [3H]ryanodine binding measurements. In <0.01 microM Ca2+ media, the highest 45Ca2+ efflux rate was measured in 0.25 M choline-Cl medium followed by 0.25 M KCl, choline 4-morpholineethanesulfonic acid (Mes), potassium 1,4-piperazinediethanesulfonic acid (Pipes), and K-Mes medium. In all five media, the 45Ca2+ efflux rates were increased when the free [Ca2+] was raised from <0.01 microM to 20 microM and decreased as the free [Ca2+] was further increased to 1 mM. An increase in [KCl] augmented Ca2+-gated single channel activity and [3H]ryanodine binding. In [3H]ryanodine binding measurements, bell-shaped Ca2+ activation/inactivation curves were obtained in media containing different monovalent cations (Li+, Na+, K+, Cs+, and choline+) and anions (Cl-, Mes-, and Pipes-). In choline-Cl medium, substantial levels of [3H]ryanodine binding were observed at [Ca2+] <0.01 microM. Replacement of Cl- by Mes- or Pipes- reduced [3H]ryanodine binding levels at all [Ca2+]. In all media, the Ca2+-dependence of [3H]ryanodine binding could be well described assuming that the skeletal muscle ryanodine receptor possesses cooperatively interacting high-affinity Ca2+ activation and low-affinity Ca2+ inactivation sites. AMP primarily affected [3H]ryanodine binding by decreasing the apparent affinity of the Ca2+ inactivation site(s) for Ca2+, while caffeine increased the apparent affinity of the Ca2+ activation site for Ca2+. Competition studies indicated that ionic composition affected Ca2+-dependent receptor activity by at least three different mechanisms: (i) competitive binding of Mg2+ and monovalent cations to the Ca2+ activation sites, (ii) binding of divalent cations to the Ca2+ inactivation sites, and (iii) binding of anions to specific anion regulatory sites.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Adenosina Monofosfato/farmacología , Aniones , Cafeína/farmacología , Canales de Calcio/efectos de los fármacos , Cationes Monovalentes , Magnesio/metabolismo , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Concentración Osmolar , Cloruro de Potasio , Canal Liberador de Calcio Receptor de Rianodina , Tritio
6.
J Membr Biol ; 169(3): 189-98, 1999 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10354465

RESUMEN

Single channel and [3H]ryanodine binding measurements were performed to test for a direct functional interaction between 2,3-butanedione 2-monoxime (BDM) and the skeletal and cardiac muscle sarcoplasmic reticulum Ca2+ release channels (ryanodine receptors). Single channel measurements were carried out in symmetric 0.25 m KCl media using the planar lipid bilayer method. BDM (1-10 mm) activated suboptimally Ca2+-activated (0.5-1 microM free Ca2+) single, purified and native cardiac and skeletal release channels in a concentration-dependent manner by increasing the number of channel events without a change of single channel conductances. BDM activated the two channel isoforms when added to either side of the bilayer. At a maximally activating cytosolic Ca2+ concentration of 20 microM, BDM was without effect on the cardiac channel, whereas it inhibited skeletal channel activities with IC50 approximately 2.5 mm. In agreement with single channel measurements, high-affinity [3H]ryanodine binding to the two channel isoforms was increased in a concentration-dependent manner at

Asunto(s)
Reactivadores de la Colinesterasa/farmacología , Diacetil/análogos & derivados , Corazón/fisiología , Músculo Esquelético/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Calcio/fisiología , Diacetil/farmacología , Perros , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Técnicas de Placa-Clamp , Conejos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
7.
J Biol Chem ; 276(23): 20144-53, 2001 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-11274202

RESUMEN

Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors.


Asunto(s)
Calmodulina/metabolismo , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Calmodulina/antagonistas & inhibidores , Perros , Potenciales de la Membrana , Unión Proteica , Conejos , Canal Liberador de Calcio Receptor de Rianodina/fisiología
8.
J Biol Chem ; 271(18): 10704-8, 1996 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-8631878

RESUMEN

Human UMP synthase is a bifunctional protein containing two separate catalytic domains, orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine-5'-phosphate decarboxylase (EC 4.1.1.23). These studies address the question of why the last two reactions in pyrimidine nucleotide synthesis are catalyzed by a bifunctional enzyme in mammalian cells, but by two separate enzymes in microorganisms. From existing data on subunit associations of the respective enzymes and calculations showing the molar concentration of enzyme to be far lower in mammalian cells than in microorganisms, we hypothesize that the covalent union in UMP synthase stabilizes the domains containing the respective catalytic centers. Evidence supporting this hypothesis comes from studies of stability of enzyme activity in vitro, at physiological concentrations, of UMP synthase, the two isolated catalytic domains prepared by site-directed mutagenesis of UMP synthase, and the yeast ODCase. The two engineered domains have activities very similar to the native UMP synthase, but unlike the bifunctional protein, the domains are quite unstable under conditions promoting the dissociated monomer.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Catálisis , Clonación Molecular , Estabilidad de Enzimas , Calor , Humanos , Cinética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Orotato Fosforribosiltransferasa/química , Orotato Fosforribosiltransferasa/genética , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/genética , Plásmidos
9.
Biochemistry ; 37(14): 4804-14, 1998 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-9537997

RESUMEN

The lobster skeletal muscle Ca2+ release channel, known also as the ryanodine receptor, is composed of four polypeptides of approximately 5000 amino acids each, like its mammalian counterparts. Clones encoding the carboxy-terminal region of the lobster ryanodine receptor were isolated from a lobster skeletal muscle cDNA library. Analysis of the deduced 1513 carboxy-terminal amino acid sequence suggests a cytoplasmic Ca2+ binding domain consisting of two EF-hand Ca2+ binding motifs (amino acid residues 594-656). The Ca2+ binding properties of this domain were assessed by preparing bacterial fusion proteins with sequences from the lobster Ca2+ binding domain and the corresponding sequences of the rabbit cardiac and skeletal muscle ryanodine receptors. The lobster skeletal muscle fusion protein bound 45Ca2+ in Ca2+ overlays, and bound two Ca2+ under equilibrium binding conditions with a Hill dissociation constant (KH) of 0.9 mM and coefficient (nH) of 1.4. Rabbit skeletal and cardiac fusion proteins bound two Ca2+ with KHs of 3.7 and 3.8 mM and nHs of 1.1 and 1.3, respectively. Similar to results previously reported for the mammalian RyRs, the lobster RyR was activated by micromolar Ca2+ and inhibited by millimolar Ca2+, as determined in single-channel and [3H]ryanodine binding measurements. These results suggest that the two EF-hand Ca2+ binding domain of the lobster Ca2+ release channel as well as the corresponding regions of the mammalian channels may play a role in Ca2+ inactivation of sarcoplasmic reticulum Ca2+ release.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Glutatión Transferasa/genética , Datos de Secuencia Molecular , Nephropidae , Conejos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Homología de Secuencia de Aminoácido
10.
Biochemistry ; 34(34): 10835-43, 1995 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-7662663

RESUMEN

Human uridine monophosphate (UMP) synthase, a bifunctional protein containing orotate phsophoribosyltransferase (OPRTase, EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (ODCase, EC 4.1.1.23) activities, has been overproduced by construction and use of a recombinant baculovirus containing the cDNA for this protein. Expression of the virus in cabbage looper larvae produces a crude larval homogenate having UMP synthase enriched about 180-fold over human placental homogenates and allows larger quantities of this human protein as well as analog proteins to be prepared for structure/function studies. A vastly improved purification procedure using a monoclonal immunoaffinity column was developed. Human UMP synthase purified from larval extracts yielded a product which comigrates in SDS gel electrophoresis with UMP synthase purified from human placenta; pure proteins prepared from these two tissue sources have the same specific activities. We found that OPRTase requires Pi ions in the assay buffers for optimal OPRTase activity; BSA in the assay vessel increases to a lesser degree both OPRTase and ODCase activities. These changes in the assay are essential to observe a parallel enrichment of the two enzyme activities. The baculovirus system was used to express human UMP synthase because it usually yields a product with posttranslational modifications that reflect those of the organism that provided the cDNA. We report data to show that human UMP synthase derived from either human placenta or larval extracts both have a sequence in which the N-terminal methionine has been removed and the formerly penultimate alanine has been acetylated.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Orotato Fosforribosiltransferasa/química , Orotato Fosforribosiltransferasa/aislamiento & purificación , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/aislamiento & purificación , Acetilación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleopoliedrovirus , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Fosfatos/farmacología , Placenta/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA