Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Bacteriol ; 199(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28847923

RESUMEN

In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s).IMPORTANCE Members of the ferric uptake regulator (Fur) protein family are bacterial transcriptional repressors that control iron uptake and storage in response to iron availability, thereby playing a crucial role in the maintenance of iron homeostasis. While fur null mutants of many bacteria have been obtained, Fur appears to be essential in Pseudomonas aeruginosa for still unknown reasons. We obtained Fur-depleted P. aeruginosa cells by conditional mutagenesis and showed that Fur is dispensable for planktonic growth, while it is required for colony formation. This is because Fur protects P. aeruginosa colonies from toxicity exerted by the pyochelin siderophore. This work provides a functional basis to the essentiality of Fur in P. aeruginosa and highlights unique properties of the Fur regulon in this species.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Mutagénesis , Mutación , Fenoles/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sideróforos/metabolismo , Tiazoles/metabolismo , Virulencia
2.
Int J Med Microbiol ; 307(4-5): 268-275, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28389211

RESUMEN

Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virulence. This strongly affects the virulence of Shigella and allows to consider the loss of SRRz/Rz1 lysis cassette as another pathoadaptive event in the life of Shigella.


Asunto(s)
Disentería Bacilar/microbiología , Genes Bacterianos , Shigella/genética , Virulencia/genética , Animales , Clonación Molecular , Fragmentación del ADN , ADN Bacteriano/genética , Escherichia coli/genética , Evolución Molecular , Células HeLa , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Lepidópteros/microbiología , Mutación , Operón/genética , Shigella/patogenicidad
3.
J Antibiot (Tokyo) ; 77(8): 522-532, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38918599

RESUMEN

Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6-305 µM, MIC: 0.5-128 µg ml-1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.


Asunto(s)
Antibacterianos , Bacillus subtilis , Histidina Quinasa , Pruebas de Sensibilidad Microbiana , Naftoquinonas , Naftoquinonas/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/química , Histidina Quinasa/antagonistas & inhibidores , Histidina Quinasa/metabolismo , Bacillus subtilis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Regulación Bacteriana de la Expresión Génica , Quinonas
4.
Sci Rep ; 13(1): 13170, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580399

RESUMEN

Shigella, the aetiological agent of human bacillary dysentery, controls the expression of its virulence determinants through an environmentally stimulated cascade of transcriptional activators. VirF is the leading activator and is essential for proper virulence expression. In this work, we report on in vitro and in vivo experiments showing that two autoinducers of the DSF family, XcDSF and BDSF interact with the jelly roll module of VirF causing its inhibition and affecting the expression of the entire virulence system of Shigella, including its ability to invade epithelial cells. We propose a molecular model explaining how the binding of XcDSF and BDSF causes inhibition of VirF by preventing its dimerization. Overall, our experimental results suggest that XcDSF and BDSF may contribute to "colonisation resistance" in the human gut or, alternatively, may be exploited for the fine-tuning of Shigella virulence expression as the bacterium migrates from the lumen to approach the intestinal mucosa. Our findings also stress how a detailed understanding of the interaction of DSF ligands with VirF may contribute to the rational development of innovative antivirulence drugs to treat shigellosis.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Shigella flexneri/metabolismo , Virulencia , Factores Reguladores del Interferón/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Shigella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
5.
Sci Rep ; 13(1): 2692, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792672

RESUMEN

The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the channel protein TolC responsible for the transport of substrates towards the extracellular environment. Besides conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here we report that the AcrAB pump heavily affects the infection process of the LF82 strain, the prototype of Adherent-Invasive Escherichia coli (AIEC) which are highly abundant in the ileal mucosa of Chron disease patients. We found that the deletion of genes encoding AcrA and/or AcrB leads to decreased survival of LF82 within macrophages. Ectopic AcrAB expression in a acrAB defective mutant restores the wild type condition. Furthermore, we demonstrate that inhibition of AcrB and replacement of the transporter with an unfunctional AcrB also interfere with bacterial viability inside macrophages. Overall, these data suggest a pivotal role of the AcrAB efflux pump in bacteria-host cell interactions also in AIEC.


Asunto(s)
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Macrófagos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo
6.
Microbiol Spectr ; 11(3): e0077823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140433

RESUMEN

The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.


Asunto(s)
Disentería Bacilar , Shigella , Humanos , Virulencia , Ácidos Grasos/metabolismo , Simulación del Acoplamiento Molecular , Shigella flexneri/genética , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/farmacología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
Microbiol Spectr ; 11(6): e0077523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37795996

RESUMEN

IMPORTANCE: In this paper, we demonstrated that apyrase is released within the host cell cytoplasm during infection to target the intracellular ATP pool. By degrading intracellular ATP, apyrase contributes to prevent caspases activation, thereby inhibiting the activation of pyroptosis in infected cells. Our results show, for the first time, that apyrase is involved in the modulation of host cell survival, thereby aiding this pathogen to dampen the inflammatory response. This work adds a further piece to the puzzle of Shigella pathogenesis. Due to its increased spread worldwide, prevention and controlling strategies are urgently needed. Overall, this study highlighted apyrase as a suitable target for an anti-virulence therapy to tackle this pathogen.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Shigella flexneri , Apirasa , Células Eucariotas , Adenosina Trifosfato
8.
Front Microbiol ; 14: 1196774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425994

RESUMEN

Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.

9.
Biomolecules ; 13(5)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37238693

RESUMEN

The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae, including Shigella, the etiological agent of bacillary dysentery. In addition to conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here, we report data demonstrating that AcrAB specifically contributes to Shigella flexneri invasion of epithelial cells. We found that deletion of both acrA and acrB genes causes reduced survival of S. flexneri M90T strain within Caco-2 epithelial cells and prevents cell-to-cell spread of the bacteria. Infections with single deletion mutant strains indicate that both AcrA and AcrB favor the viability of the intracellular bacteria. Finally, we were able to further confirm the requirement of the AcrB transporter activity for intraepithelial survival by using a specific EP inhibitor. Overall, the data from the present study expand the role of the AcrAB pump to an important human pathogen, such as Shigella, and add insights into the mechanism governing the Shigella infection process.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Células CACO-2 , Antibacterianos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
10.
Methods Mol Biol ; 2548: 21-35, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151489

RESUMEN

The functional and physiological characterization of bacterial genes required for growth and/or cell survival is limited by the inability to generate deletion mutants lacking the specific gene of interest. This limitation can be circumvented by generating conditional mutants in which the loss of the endogenous copy of the gene is compensated by the introduction of the wild-type allele under the control of an inducible promoter, which allows for tightly regulated expression of the gene of interest. Besides the confirmation and/or functional investigation of essential genes, conditional mutants can also be useful to investigate the effect of finely controlled expression of nonessential genes. In this chapter, we describe a method that can be used to generate stable and unmarked conditional mutants in Pseudomonas aeruginosa.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Genes Esenciales , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
11.
Biomolecules ; 12(9)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139160

RESUMEN

Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Shigella , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Histidina Quinasa/genética , Humanos , Shigella/metabolismo , Transducción de Señal/fisiología , Virulencia/genética
12.
Microbiol Spectr ; 10(2): e0035122, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35416701

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become the leading cause of skin and soft tissue infections (SSTIs). Biofilm production further complicates patient treatment, contributing to increased bacterial persistence and antibiotic tolerance. The study aimed to explore the efficacy of different antibiotics on biofilm-producing MRSA isolated from patients with SSTI. A total of 32 MRSA strains were collected from patients with SSTI. The MIC and minimal biofilm eradication concentration (MBEC) were measured in planktonic and biofilm growth. The study showed that dalbavancin, linezolid, and vancomycin all inhibited MRSA growth at their EUCAST susceptible breakpoint. Of the MRSA strains, 87.5% (n = 28) were strong biofilm producers (SBPs), while only 12.5% (n = 4) were weak biofilm producers (WBPs). The MBEC90 values for dalbavancin were significantly lower than those of linezolid and vancomycin in all tested strains. We also found that extracellular DNA (eDNA) contributes to the initial microbial attachment and biofilm formation. The amount of eDNA differed among MRSA strains and was significantly higher in those isolates with high dalbavancin and vancomycin tolerance. Exogenously added DNA increased the MBEC90 and protection of biofilm cells from dalbavancin activity. Of note, the relative abundance of eDNA was higher in MRSA biofilms exposed to MBEC90 dalbavancin than in untreated MRSA biofilms and those exposed to sub-MIC90. Overall, dalbavancin was the most active antibiotic against MRSA biofilms at concentrations achievable in the human serum. Moreover, the evidence of a drug-related increase of eDNA and its contribution to antimicrobial drug tolerance reveals novel potential targets for antibiofilm strategies against MRSA. IMPORTANCE Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) worldwide. In addition, methicillin-resistant S. aureus (MRSA) is increasingly frequent in postoperative infections and responsible for a large number of hospital readmissions and deaths. Biofilm formation by S. aureus is a primary risk factor in SSTIs, due to a higher antibiotic tolerance. Our study showed that the biofilm-forming capacity varied among MRSA strains, although strong biofilm producers were significantly more abundant than weak biofilm producer strains. Notably, dalbavancin demonstrated a potent antibiofilm activity at concentrations achievable in human serum. Nevertheless, dalbavancin activity was affected by an increased concentration of extracellular DNA in the biofilm matrix. This study provides novel insight for designing more targeted therapeutic strategies against MRSA and to prevent or eradicate harmful biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , ADN , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Teicoplanina/análogos & derivados , Vancomicina/farmacología , Vancomicina/uso terapéutico
13.
Microorganisms ; 9(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673345

RESUMEN

Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical response to events inducing stress in the bacterial envelope. In these cases, hypervesiculation is regarded as a strategy to avoid the dangerous accumulation of undesired products within the periplasm. Several housekeeping genes influence the biogenesis of OMVs, including those correlated with peptidoglycan and cell wall dynamics. In this work, we have investigated the relationship between OMV production and the lysis module of the E. coli DLP12 cryptic prophage. This module is an operon encoding a holin, an endolysin and two spannins, and is known to be involved in cell wall maintenance. We find that deleting the lysis module increases OMV production, suggesting that during evolution this operon has been domesticated to regulate vesiculation, likely through the elimination of non-recyclable peptidoglycan fragments. We also show that the expression of the lysis module is negatively regulated by environmental stress stimuli as high osmolarity, low pH and low temperature. Our data further highlight how defective prophages finely contribute to bacterial host fitness.

14.
Front Mol Biosci ; 8: 723274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381818

RESUMEN

Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.

15.
Front Microbiol ; 11: 1935, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013734

RESUMEN

Efflux pumps (EPs) are present in all living cells and represent a large and important group of transmembrane proteins involved in transport processes. In bacteria, multidrug resistance efflux pumps (MDR EPs) confer resistance to antibiotics at different levels and are deeply implicated in the fast and dramatic emergence of antibiotic resistance. Recently, several reports have outlined the great versatility of MDR EPs in exporting a large variety of compounds other than antibiotics, thus promoting bacterial adaptation to a wide range of habitats. In several bacterial pathogens, MDR EPs contribute to increase the virulence potential and are directly involved in the crosstalk with host cells. In this work, we have investigated the possible role of MDR EPs in the infectious process of the adherent-invasive Escherichia coli (AIEC), a group of pathogenic E. coli that colonize the ileal mucosa of Crohn disease (CD) patients causing a strong intestinal inflammation. The results we have obtained indicate that, with the exception of mdtM, all MDR-EPs encoding genes present in E.coli K12 are conserved in the AIEC prototype strain LF82. The analysis of MDR EP expression during LF82 infection of macrophages and epithelial cells reveals that their transcription is highly modulated during the bacterial intracellular life. Notably, some EP genes are regulated in a cell-type specific manner, strongly suggesting that their function is required for LF82 successful infection. AIEC are able to adhere to and invade intestinal epithelial cells and, importantly, to survive and multiply within macrophages. Thus, we further investigated the role of EPs specifically induced by macrophage environment. We present evidence indicating that deletion of mdtEF genes, encoding an MDR EP belonging to the resistance nodulation division (RND) family, significantly impairs survival of LF82 in macrophages and that the wild type phenotype can be restored by trans-complementation with functional MdtEF pump. Altogether, our results indicate a strong involvement of MDR EPs in host pathogen interaction also in AIEC and highlight the contribution of MdtEF to the fitness of LF82 in the macrophage environment.

16.
Sci Rep ; 9(1): 2906, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814604

RESUMEN

Efflux pumps are membrane protein complexes conserved in all living organisms. Beyond being involved in antibiotic extrusion in several bacteria, efflux pumps are emerging as relevant players in pathogen-host interactions. We have investigated on the possible role of the efflux pump network in Shigella flexneri, the etiological agent of bacillary dysentery. We have found that S. flexneri has retained 14 of the 20 pumps characterized in Escherichia coli and that their expression is differentially modulated during the intracellular life of Shigella. In particular, the emrKY operon, encoding an efflux pump of the Major Facilitator Superfamily, is specifically and highly induced in Shigella-infected U937 macrophage-like cells and is activated in response to a combination of high K+ and acidic pH, which are sensed by the EvgS/EvgA two-component system. Notably, we show that following S. flexneri infection, macrophage cytosol undergoes a mild reduction of intracellular pH, permitting EvgA to trigger the emrKY activation. Finally, we present data suggesting that EmrKY is required for the survival of Shigella in the harsh macrophage environment, highlighting for the first time the key role of an efflux pump during the Shigella invasive process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Disentería Bacilar/microbiología , Macrófagos/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Shigella flexneri/fisiología , Proteínas Bacterianas/genética , Proteínas de Unión al Calcio/genética , Supervivencia Celular , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular , Macrófagos/microbiología , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Unión Periplasmáticas/genética , Potasio/metabolismo , Shigella flexneri/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células U937 , Virulencia
17.
Sci Rep ; 9(1): 7912, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31113989

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

18.
Microorganisms ; 7(9)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443538

RESUMEN

Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.

19.
Front Microbiol ; 8: 2390, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259590

RESUMEN

Among the intestinal pathogenic Escherichia coli, enteroinvasive E. coli (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to Shigella, the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of Shigella, they neither have the full set of traits that define Shigella nor have undergone the extensive gene decay observed in Shigella. Molecular analysis confirms that EIEC are widely distributed among E. coli phylogenetic groups and correspond to bioserotypes found in many E. coli serogroups. Like Shigella, also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In Shigella, the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the environment, are redundant or deleterious for the life inside the host. The pathoadaptation process that has led Shigella to modify its metabolic profile and increase its pathogenic potential is still in infancy in EIEC, although maintenance of some features typical of E. coli might favor their emerging relevance as intestinal pathogens worldwide, as documented by recent outbreaks in industrialized countries. In this review, we will discuss the evolution of EIEC toward Shigella-like invasive forms going through the epidemiology, including the emergence of new virulent strains, their genome organization, and the complex interactions they establish with the host.

20.
Front Microbiol ; 6: 902, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379660

RESUMEN

In Pseudomonas aeruginosa the Gac signaling system and the second messenger cyclic diguanylate (c-di-GMP) participate in the control of the switch between planktonic and biofilm lifestyles, by regulating the production of the two exopolysaccharides Pel and Psl. The Gac and c-di-GMP regulatory networks also coordinately promote the production of the pyoverdine siderophore, and the extracellular polysaccharides Pel and Psl have recently been found to mediate c-di-GMP-dependent regulation of pyoverdine genes. Here we demonstrate that Pel and Psl are also essential for Gac-mediated activation of pyoverdine production. A pel psl double mutant produces very low levels of pyoverdine and shows a marked reduction in the expression of the pyoverdine-dependent virulence factors exotoxin A and PrpL protease. While the exopolysaccharide-proficient parent strain forms multicellular planktonic aggregates in liquid cultures, the Pel and Psl-deficient mutant mainly grows as dispersed cells. Notably, artificially induced cell aggregation is able to restore pyoverdine-dependent gene expression in the pel psl mutant, in a way that appears to be independent of iron diffusion or siderophore signaling, as well as of recently described contact-dependent mechanosensitive systems. This study demonstrates that cell aggregation represents an important cue triggering the expression of pyoverdine-related genes in P. aeruginosa, suggesting a novel link between virulence gene expression, cell-cell interaction and the multicellular community lifestyle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA