Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928178

RESUMEN

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Asunto(s)
Ritmo Circadiano , Dopamina , Ratones Noqueados , Serotonina , Triptófano Hidroxilasa , Tirosina 3-Monooxigenasa , Área Tegmental Ventral , Animales , Serotonina/metabolismo , Ratones , Ritmo Circadiano/fisiología , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Área Tegmental Ventral/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Neuronas Dopaminérgicas/metabolismo , Masculino , Sustancia Negra/metabolismo , Ratones Endogámicos C57BL , Trastorno Bipolar/metabolismo , Trastorno Bipolar/genética
2.
Neurobiol Dis ; 158: 105448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280523

RESUMEN

INTRODUCTION: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS: Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.


Asunto(s)
Neostriado/fisiología , Plasticidad Neuronal/fisiología , Serotonina/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Fenómenos Electrofisiológicos , Femenino , Ácido Glutámico/fisiología , Potenciación a Largo Plazo , Masculino , Ratones , Fibras Nerviosas , Enfermedad de Parkinson Secundaria/fisiopatología , Caracteres Sexuales , Transmisión Sináptica/fisiología , Triptófano Hidroxilasa/metabolismo
3.
Nat Methods ; 15(11): 969-976, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377377

RESUMEN

Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.


Asunto(s)
Potenciales de Acción , Hiperalgesia/fisiopatología , Neuronas/fisiología , Optogenética , Dolor/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Femenino , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Paclitaxel/toxicidad , Dolor/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Pez Cebra
4.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070217

RESUMEN

Rhes is one of the most interesting genes regulated by thyroid hormones that, through the inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission. Rhes mRNA is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes transcript is also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent regulation of dopaminergic transmission, data showed that lack of Rhes enhanced cocaine- and amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates and Parkinson's disease (PD) patients, suggesting a link between dopaminergic innervation and physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent modulation of autophagy and mitophagy processes, and encouraging further investigations about mechanisms underlying dysfunctions of the nigrostriatal system.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Humanos , Levodopa/metabolismo , Ratones , Ratones Noqueados , Mitofagia , Modelos Neurológicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transmisión Sináptica
5.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31061091

RESUMEN

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Vocalización Animal/fisiología , Animales , Mapeo Encefálico , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/patología , Imagen por Resonancia Magnética , Masculino , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/patología , Conducta Social
6.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722793

RESUMEN

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Red Nerviosa/fisiología , Adolescente , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Niño , Deleción Cromosómica , Trastornos de los Cromosomas/fisiopatología , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Disfunción Cognitiva/complicaciones , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Discapacidad Intelectual/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiopatología
7.
Cereb Cortex ; 28(4): 1141-1153, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28184409

RESUMEN

Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in contactin associated protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Animales , Trastorno Autístico/psicología , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Femenino , Procesamiento de Imagen Asistido por Computador , Relaciones Interpersonales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Transducción Genética , Sustancia Blanca/diagnóstico por imagen , Proteína Fluorescente Roja
8.
Cell Mol Life Sci ; 75(7): 1255-1267, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29098325

RESUMEN

Glaucoma and other optic neuropathies are characterized by a loss of retinal ganglion cells (RGCs), a cell layer located in the posterior eye segment. Several preclinical studies demonstrate that neurotrophins (NTs) prevent RGC loss. However, NTs are rarely investigated in the clinic due to various issues, such as difficulties in reaching the retina, the very short half-life of NTs, and the need for multiple injections. We demonstrate that NTs can be conjugated to magnetic nanoparticles (MNPs), which act as smart drug carriers. This combines the advantages of the self-localization of the drug in the retina and drug protection from fast degradation. We tested the nerve growth factor and brain-derived neurotrophic factor by comparing the neuroprotection of free versus conjugated proteins in a model of RGC loss induced by oxidative stress. Histological data demonstrated that the conjugated proteins totally prevented RGC loss, in sharp contrast to the equivalent dose of free proteins, which had no effect. The overall data suggest that the nanoscale MNP-protein hybrid is an excellent tool in implementing ocular drug delivery strategies for neuroprotection and therapy.


Asunto(s)
Nanopartículas/química , Factores de Crecimiento Nervioso/farmacología , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/farmacología , Sistemas de Liberación de Medicamentos , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Factor de Crecimiento Nervioso/administración & dosificación , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/administración & dosificación , Factores de Crecimiento Nervioso/química , Células PC12 , Ratas , Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Tumorales Cultivadas
9.
J Neurosci ; 36(10): 3064-78, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961959

RESUMEN

The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/metabolismo , Neuronas/fisiología , Regiones Promotoras Genéticas/genética , Factores de Edad , Animales , Animales Recién Nacidos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Encéfalo/citología , Muerte Celular/genética , D-Aspartato Oxidasa/genética , Decitabina , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Mov Disord ; 31(4): 583-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26853527

RESUMEN

BACKGROUND: Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. METHODS: Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. RESULTS: Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. CONCLUSIONS: Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Desempeño Psicomotor/fisiología , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Conducta Animal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Neurobiol Dis ; 78: 146-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818655

RESUMEN

Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-ß-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.


Asunto(s)
Cuerpo Estriado/fisiología , Proteínas de Unión al GTP/fisiología , Receptores de Dopamina D2/fisiología , Transmisión Sináptica , Potenciales de Acción , Adolescente , Adulto , Animales , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/metabolismo , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad de la Especie
12.
Cereb Cortex ; 23(6): 1484-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22628459

RESUMEN

Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance in GABAergic inhibition, and the notion of "interneuronopathy" was proposed. Here, we studied the impact of a polyalanine expansion of aristaless-related homeobox (ARX) gene, a mutation notably found in West and Ohtahara syndromes. Analysis of Arx((GCG)7/Y) knock-in mice revealed that GABA neuron development is not affected. Moreover, pyramidal cell migration and cortical layering are unaltered in these mice. Interestingly, electrophysiological recordings show that hippocampal pyramidal neurons displayed a frequency of inhibitory postsynaptic currents similar to wild-type (WT) mice. However, these neurons show a dramatic increase in the frequency of excitatory inputs associated with a remodeling of their axonal arborization, suggesting that epilepsy in Arx((GCG)7/Y)mice would result from a glutamate network remodeling. We therefore propose that secondary alterations are instrumental for the development of disease-specific phenotypes and should be considered to explain the phenotypic diversity associated with epileptogenic mutations.


Asunto(s)
Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Glutamatos/metabolismo , Proteínas de Homeodominio/genética , Péptidos/genética , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Proteína Doblecortina , Electroporación , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Neuronas GABAérgicas/citología , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , Estadísticas no Paramétricas , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Transfección
13.
ACS Chem Neurosci ; 15(8): 1702-1711, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38433715

RESUMEN

Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.


Asunto(s)
Fluoxetina , Serotonina , Fluoxetina/farmacología , Serotonina/farmacología , Antidepresivos/farmacología , Hipocampo , Encéfalo
14.
Sci Adv ; 10(28): eadg1421, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996019

RESUMEN

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.


Asunto(s)
Trastorno Autístico , Transcriptoma , Ubiquitina-Proteína Ligasas , Animales , Masculino , Femenino , Trastorno Autístico/genética , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Conducta Animal , Caracteres Sexuales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad
15.
ACS Chem Neurosci ; 14(23): 4093-4104, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37966717

RESUMEN

Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.


Asunto(s)
Serotonina , Transmisión Sináptica , Humanos , Animales , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Serotonina/metabolismo , Mamíferos/metabolismo
16.
Genes (Basel) ; 13(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35741731

RESUMEN

Athletic performance is influenced by many factors such as the environment, diet, training and endurance or speed in physical effort and by genetic predisposition. Just a few studies have analyzed the impact of genotypes on physical performance in rugby. The aim of this study was to verify the modulation of genetic influence on rugby-specific physical performance. Twenty-seven elite rugby union players were involved in the study during the in-season phase. Molecular genotyping was performed for: angiotensin-converting enzyme (ACE rs4646994), alfa-actinin-3 (ACTN3 rs1815739) and monocarboxylate transporter 1 (MCT1 rs1049434) and their variants. Lean mass index (from skinfolds), lower-limb explosive power (countermovement jump), agility (505), speed (20 m), maximal aerobic power (Yo-yo intermittent recovery test level 1) and repeated sprint ability (12 × 20 m) were evaluated. In our rugby union players ACE and ACTN3 variants did not show any influence on athletic performance. MCT1 analysis showed that TT-variant players had the highest peak vertical power (p = 0.037) while the ones with the AA genotype were the fastest in both agility and sprint tests (p = 0.006 and p = 0.012, respectively). Considering the T-dominant model, the AA genotype remains the fastest in both tests (agility: p = 0.013, speed: p = 0.017). Only the MCT1 rs1049434 A allele seems to be advantageous for elite rugby union players, particularly when power and speed are required.


Asunto(s)
Rendimiento Atlético , Fútbol Americano , Actinina/genética , Polimorfismo Genético , Rugby
17.
Genes (Basel) ; 13(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35741757

RESUMEN

Several genes are involved in sport performance, especially in injuries incidence. The aim of this study was to investigate the association of ACE, ACTN3, COL1A1, and MCT1 genotypes and injuries in rugby players in order to find a genotype/phenotype correlation and provide useful information improving athletic performance. One-hundred male professional and semiprofessional rugby players were selected. Analysis was performed genotyping the genes ACE, ACTN3, COL1A1, and MCT1 as candidate gene of interest involved in athletic performance. A control group of non-athletic Italian male participants was analyzed to compare the results. We found statistical significance of MCT1 rs1049434 AA for total injuries (χ2 = 0.115; p = 0.003) and bone injuries (χ2 = 0.603; p = 0.007) in the rugby athlete population. No statistical significance was found between injury incidence and ACE, ACTN3, COL1A1 genotypes. The MCT1 AA genotype is associated with the incidence of total and bone injuries in the rugby player population. Although environmental factors such as lifestyle, diet, training, and stress can influence athletic performance, our data demonstrated the importance of genetic study in sport aimed at developing personalized training and achieving the best possible athletic excellence.


Asunto(s)
Traumatismos en Atletas , Rendimiento Atlético , Rugby , Actinina/genética , Atletas , Traumatismos en Atletas/epidemiología , Traumatismos en Atletas/genética , Proteínas de Ciclo Celular/genética , Cadena alfa 1 del Colágeno Tipo I/genética , Humanos , Masculino , Proteínas Oncogénicas/genética , Peptidil-Dipeptidasa A/genética , Rugby/lesiones
18.
Cells ; 11(12)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35741068

RESUMEN

PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9-25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.


Asunto(s)
Excitabilidad Cortical , Epilepsia , Animales , Cadherinas/genética , Epilepsia/genética , Femenino , Masculino , Ratones , Mosaicismo , Protocadherinas
19.
Nat Commun ; 13(1): 1056, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217677

RESUMEN

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Vías Nerviosas/fisiología , Corteza Prefrontal/diagnóstico por imagen
20.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915065

RESUMEN

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Adulto , Animales , Ácido Aspártico/metabolismo , Trastorno del Espectro Autista/genética , D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Duplicación de Gen , Humanos , Discapacidad Intelectual/genética , Trastornos de la Memoria/genética , Ratones , Oxidorreductasas , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA