Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circulation ; 132(2): 109-21, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25995316

RESUMEN

BACKGROUND: Heart development is tightly regulated by signaling events acting on a defined number of progenitor and differentiated cardiac cells. Although loss of function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhibit a robust mechanism for regeneration after extensive cell loss. METHODS AND RESULTS: By combining a conditional cell ablation approach with a novel blastocyst complementation strategy, we generated murine embryos that exhibit a full spectrum of cardiac progenitor cell or cardiomyocyte ablation. Remarkably, ablation of up to 60% of cardiac progenitor cells at embryonic day 7.5 was well tolerated and permitted embryo survival. Ablation of embryonic cardiomyocytes to a similar degree (50% to 60%) at embryonic day 9.0 could be fully rescued by residual myocytes with no obvious adult cardiac functional deficit. In both ablation models, an increase in cardiomyocyte proliferation rate was detected and accounted for at least some of the rapid recovery of myocardial cellularity and heart size. CONCLUSION: Our study defines the threshold for cell loss in the embryonic mammalian heart and reveals a robust cardiomyocyte compensatory response that sustains normal fetal development.


Asunto(s)
Proliferación Celular/fisiología , Células Madre Embrionarias/fisiología , Corazón Fetal/citología , Miocitos Cardíacos/fisiología , Animales , Recuento de Células/métodos , Corazón Fetal/crecimiento & desarrollo , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos
2.
Circ Res ; 112(6): 900-10, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23307821

RESUMEN

RATIONALE: Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). OBJECTIVE: To identify novel regulators of mesodermal cardiac lineage commitment. METHODS AND RESULTS: We performed a bioinformatic-based transcription factor binding site analysis on upstream promoter regions of genes that are enriched in embryonic stem cell-derived CPCs. From 32 candidate transcription factors screened, we found that Yin Yang 1 (YY1), a repressor of sarcomeric gene expression, is present in CPCs in vivo. Interestingly, we uncovered the ability of YY1 to transcriptionally activate Nkx2.5, a key marker of early cardiogenic commitment. YY1 regulates Nkx2.5 expression via a 2.1-kb cardiac-specific enhancer as demonstrated by in vitro luciferase-based assays, in vivo chromatin immunoprecipitation, and genome-wide sequencing analysis. Furthermore, the ability of YY1 to activate Nkx2.5 expression depends on its cooperative interaction with Gata4 at a nearby chromatin. Cardiac mesoderm-specific loss-of-function of YY1 resulted in early embryonic lethality. This was corroborated in vitro by embryonic stem cell-based assays in which we showed that the overexpression of YY1 enhanced the cardiogenic differentiation of embryonic stem cells into CPCs. CONCLUSIONS: These results demonstrate an essential and unexpected role for YY1 to promote cardiogenesis as a transcriptional activator of Nkx2.5 and other CPC-enriched genes.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Proteínas de Homeodominio/metabolismo , Mioblastos Cardíacos/citología , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/fisiología , Animales , Diferenciación Celular/genética , Factor de Transcripción GATA4/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Proteína Homeótica Nkx-2.5 , Ratones , Mioblastos Cardíacos/química , Activación Transcripcional/fisiología , Factor de Transcripción YY1/análisis , Factor de Transcripción YY1/genética
3.
Hum Mutat ; 31(8): E1594-608, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20648632

RESUMEN

Studies in humans and animals suggest a role for NPY in the mediation of behavioral stress responses. Here, we examined whether the NPY promoter variant rs16147:T>C is functional for expression of NPY in a brain region relevant for behavioral control, anxiety and depression, the anterior cingulate cortex. In silico analysis of DNA structural profile changes produced by rs16147 variation suggests allelic differences in protein binding at the rs16147 site. This was confirmed by electrophoretic mobility shift assay, demonstrating that the rs16147 C-allele has strongly reduced affinity for a yet unknown factor compared to the T-allele. Analyzing 107 human post-mortem brain samples we show that allelic variation at rs16147 contributes to regulation of NPY mRNA and peptide levels in this region. Specifically, the C-allele leads to increased gene expression. In agreement with the molecular findings, rs16147:T>C is associated with anxiety and depressive symptoms in 314 young adults via a gene x environment interaction with early childhood adversity, replicating the recent finding of rs16147-C as a risk factor for stress related psychopathology. Our results show the importance of rs16147:T>C for regulation of NPY gene expression and brain function.


Asunto(s)
Regulación de la Expresión Génica , Neuropéptido Y/genética , Polimorfismo de Nucleótido Simple/genética , Corteza Prefrontal/metabolismo , Regiones Promotoras Genéticas , ADN/química , ADN/metabolismo , Ambiente , Femenino , Humanos , Masculino , Neuropéptido Y/metabolismo , Unión Proteica , Análisis de Regresión
4.
Cell Rep ; 14(7): 1662-1672, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876178

RESUMEN

A hallmark of cardiac development is the formation of myocardial trabeculations exclusively from the luminal surface of the primitive heart tube. Although a number of genetic defects in the endocardium and cardiac jelly disrupt myocardial trabeculation, the role of cell polarization remains unclear. Here, we demonstrate that atypical protein kinase C iota (Prkci) and its interacting partners are localized primarily to the luminal side of myocardial cells of early murine embryonic hearts. A subset of these cells undergoes polarized cell division with the cell division plane perpendicular to the heart's lumen. Disruption of the cell polarity complex by targeted gene mutations results in aberrant mitotic spindle alignment, loss of polarized cardiomyocyte division, and loss of normal myocardial trabeculation. Collectively, these results suggest that, in response to inductive signals, Prkci and its downstream partners direct polarized cell division of luminal myocardial cells to drive trabeculation in the nascent heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , División Celular/genética , Isoenzimas/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Proteína Quinasa C/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos/genética , Antígenos/metabolismo , Polaridad Celular , Embrión de Mamíferos , Endocardio/embriología , Endocardio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Isoenzimas/metabolismo , Ratones , Miocitos Cardíacos/ultraestructura , Unión Proteica , Proteína Quinasa C/metabolismo , Transducción de Señal , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Troponina T/genética , Troponina T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA