Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 10(12): e1004860, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25521617

RESUMEN

The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ibuprofeno/farmacología , Longevidad/efectos de los fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Evaluación Preclínica de Medicamentos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Estabilidad Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptófano/metabolismo
2.
bioRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39185160

RESUMEN

Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype that is observed when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing crossover formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double strand breaks from becoming crossovers, limiting crossovers at sites of initial DSB formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the reinforcement of crossover-eligible intermediates, designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors, coordinate meiotic recombination with synapsis, and contribute to the progressive implementation of meiotic recombination, guaranteeing crossover control.

3.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37408786

RESUMEN

Meiotic crossovers promote accurate chromosome segregation during gametogenesis. In C. elegans , a highly conserved AAA ATPase, PCH-2, ensures that homologous chromosomes have at least one crossover, preventing meiotic defects. PCH-2 localizes to meiotic chromosomes and this localization is extended when there are defects in meiotic recombination, suggesting a role in responding to defects. Here, we show that, unlike in other systems, PCH-2 does not persist on meiotic chromosomes when there are chromosomal inversions but does persist when there are whole chromosome fusions. Moreover, this persistence correlates with an increase in crossovers, demonstrating that PCH-2's localization to chromosomes promotes crossover formation.

4.
iScience ; 25(11): 105410, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388960

RESUMEN

Deletion of genes encoding ribosomal proteins extends lifespan in yeast. This increases translation of the functionally conserved transcription factor Gcn4, and lifespan extension in these mutants is GCN4-dependent. Gcn4 is also translationally upregulated by uncharged tRNAs, as are its C aenorhabditis elegans and mammalian functional orthologs. Here, we show that cytosolic tRNA synthetase inhibitors upregulate Gcn4 translation and extend yeast lifespan in a Gcn4-dependent manner. This cytosolic tRNA synthetase inhibitor is also able to extend the lifespan of C. elegans in an atf-4-dependent manner. We show that mitochondrial tRNA synthetase inhibitors greatly extend the lifespan of C. elegans, and this depends on atf-4. This suggests that perturbations of both cytosolic and mitochondrial translation may act in part via the same downstream pathway. These findings establish GCN4 orthologs as conserved longevity factors and, as long-lived mice exhibit elevated ATF4, leave open the possibility that tRNA synthetase inhibitors could also extend lifespan in mammals.

5.
Aging Cell ; 16(4): 785-796, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28568901

RESUMEN

Sgf73, a core component of SAGA, is the yeast orthologue of ataxin-7, which undergoes CAG-polyglutamine repeat expansion leading to the human neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Deletion of SGF73 dramatically extends replicative lifespan (RLS) in yeast. To further define the basis for Sgf73-mediated RLS extension, we performed ChIP-Seq, identified 388 unique genomic regions occupied by Sgf73, and noted enrichment in promoters of ribosomal protein (RP)-encoding genes. Of 388 Sgf73 binding sites, 33 correspond to 5' regions of genes implicated in RLS extension, including 20 genes encoding RPs. Furthermore, half of Sgf73-occupied, RLS-linked RP genes displayed significantly reduced expression in sgf73Δ mutants, and double null strains lacking SGF73 and a Sgf73-regulated, RLS-linked RP gene exhibited no further increase in replicative lifespan. We also found that sgf73Δ mutants display altered acetylation of Ifh1, an important regulator of RP gene transcription. These findings implicate altered ribosomal protein expression in sgf73Δ yeast RLS and highlight altered acetylation as a pathway of relevance for SCA7 neurodegeneration.


Asunto(s)
Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Acetilación , Ataxina-7/deficiencia , Ataxina-7/genética , Secuencia de Bases , Sitios de Unión , División Celular , Histona Acetiltransferasas/deficiencia , Humanos , Viabilidad Microbiana , Anotación de Secuencia Molecular , Unión Proteica , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA