RESUMEN
This report describes the status of introductions globally for eight World Health Organization (WHO)-recommended new and underutilized vaccines, comprising 10 individual vaccine antigens. By 2021, among 194 countries worldwide, 33 (17%) provided all of these 10 WHO-recommended antigens as part of their routine immunization schedules; only one low-income country had introduced all of these recommended vaccines. Universal hepatitis B birth dose; human papillomavirus vaccine; rotavirus vaccine; and diphtheria, tetanus, and pertussis-containing vaccine first booster dose have been introduced by 57%, 59%, 60%, and 72% of all countries worldwide, respectively. Pneumococcal conjugate vaccine, rubella-containing vaccine, measles-containing vaccine second dose, and Haemophilus influenzae type b vaccine have been introduced by 78%, 89%, 94%, and 99% of all countries, respectively. The annual rate of new vaccine introductions declined precipitously when the COVID-19 pandemic started, from 48 in 2019 to 15 in 2020 before rising to 26 in 2021. Increased efforts to accelerate new and underutilized vaccine introductions are urgently needed to improve universal equitable access to all recommended vaccines to achieve the global Immunization Agenda 2021-2030 (IA2030) targets.
Asunto(s)
COVID-19 , Vacunas contra Haemophilus , Humanos , Lactante , Vacuna contra Difteria, Tétanos y Tos Ferina , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Vacuna Antisarampión , Vacuna contra la Rubéola , Esquemas de Inmunización , Vacuna Antipolio de Virus Inactivados , Vacunas contra Hepatitis B , Vacunas CombinadasRESUMEN
The SARS-CoV-2 Delta variant emerged shortly after COVID-19 vaccines became available in 2021. We describe SARS-CoV-2 breakthrough infections in a highly vaccinated, well-monitored US Embassy community in Kampala, Uganda. Defining breakthrough infection rates in highly vaccinated populations can help determine public health messaging, guidance, and policy globally.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Uganda/epidemiologíaRESUMEN
The US Centers for Disease Control and Prevention (CDC) supports international partners in introducing vaccines, including those against SARS-CoV-2 virus. CDC contributes to the development of global technical tools, guidance, and policy for COVID-19 vaccination and has established its COVID-19 International Vaccine Implementation and Evaluation (CIVIE) program. CIVIE supports ministries of health and their partner organizations in developing or strengthening their national capacities for the planning, implementation, and evaluation of COVID-19 vaccination programs. CIVIE's 7 priority areas for country-specific technical assistance are vaccine policy development, program planning, vaccine confidence and demand, data management and use, workforce development, vaccine safety, and evaluation. We discuss CDC's work on global COVID-19 vaccine implementation, including priorities, challenges, opportunities, and applicable lessons learned from prior experiences with Ebola, influenza, and meningococcal serogroup A conjugate vaccine introductions.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , Estados Unidos/epidemiología , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S.RESUMEN
In 1988, the World Health Assembly established the Global Polio Eradication Initiative (GPEI). Since then, wild poliovirus (WPV) cases have decreased approximately 99.99%, and WPV types 2 and 3 have been declared eradicated. Only Afghanistan and Pakistan have never interrupted WPV type 1 (WPV1) transmission. This report describes global progress toward polio eradication during January 1, 2020-April 30, 2022, and updates previous reports (1,2). This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.* Five WPV1 cases were reported from Afghanistan and Pakistan in 2021, compared with 140 in 2020. In 2022 (as of May 5), three WPV1 cases had been reported: one from Afghanistan and two from Pakistan. WPV1 genetically linked to virus circulating in Pakistan was identified in Malawi in a child with paralysis onset in November 2021. Circulating vaccine-derived polioviruses (cVDPVs), with neurovirulence and transmissibility similar to that of WPV, emerge in populations with low immunity following prolonged circulation of Sabin strain oral poliovirus vaccine (OPV) (3). During January 2020-April 30, 2022, a total of 1,856 paralytic cVDPV cases were reported globally: 1,113 in 2020 and 688 in 2021, including cases in Afghanistan and Pakistan. In 2022 (as of May 5), 55 cVDPV cases had been reported. Intensified programmatic actions leading to more effective outbreak responses are needed to stop cVDPV transmission. The 2022-2026 GPEI Strategic Plan objective of ending WPV1 transmission by the end of 2023 is attainable (4). However, the risk for children being paralyzed by polio remains until all polioviruses, including WPV and cVDPV, are eradicated.
Asunto(s)
Poliomielitis , Poliovirus , Niño , Erradicación de la Enfermedad , Humanos , Programas de Inmunización , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Poliovirus/genética , Vacuna Antipolio Oral , Vigilancia de la PoblaciónRESUMEN
BACKGROUND: Meningococcal serogroup A conjugate vaccine (MACV) was introduced in 2017 into the routine childhood immunization schedule (at 15-18 months of age) in Burkina Faso to help reduce meningococcal meningitis burden. MACV was scheduled to be co-administered with the second dose of measles-containing vaccine (MCV2), a vaccine already in the national schedule. One year following the introduction of MACV, an assessment was conducted to qualitatively examine health workers' perceptions of MACV introduction, identify barriers to uptake, and explore opportunities to improve coverage. METHODS: Twelve in-depth interviews were conducted with different cadres of health workers in four purposively selected districts in Burkina Faso. Districts were selected to include urban and rural areas as well as high and low MCV2 coverage areas. Respondents included health workers at the following levels: regional health managers (n = 4), district health managers (n = 4), and frontline healthcare providers (n = 4). All interviews were recorded, transcribed, and thematically analyzed using qualitative content analysis. RESULTS: Four themes emerged around supply and health systems barriers, demand-related barriers, specific challenges related to MACV and MCV2 co-administration, and motivations and efforts to improve vaccination coverage. Supply and health systems barriers included aging cold chain equipment, staff shortages, overworked and poorly trained staff, insufficient supplies and financial resources, and challenges with implementing community outreach activities. Health workers largely viewed MACV introduction as a source of motivation for caregivers to bring their children for the 15- to 18-month visit. However, they also pointed to demand barriers, including cultural practices that sometimes discourage vaccination, misconceptions about vaccines, and religious beliefs. Challenges in co-administering MACV and MCV2 were mainly related to reluctance among health workers to open multi-dose vials unless enough children were present to avoid wastage. CONCLUSIONS: To improve effective administration of vaccines in the second-year of life, adequate operational and programmatic planning, training, communication, and monitoring are necessary. Moreover, clear policy communication is needed to help ensure that health workers do not refrain from opening multi-dose vials for small numbers of children.
Asunto(s)
Actitud del Personal de Salud , Programas de Inmunización/organización & administración , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis Serogrupo A , Burkina Faso , Humanos , Esquemas de Inmunización , Lactante , Vacunas ConjugadasRESUMEN
BACKGROUND: After successful meningococcal serogroup A conjugate vaccine (MACV) campaigns since 2010, Burkina Faso introduced MACV in March 2017 into the routine Expanded Programme for Immunization schedule at age 15-18 months, concomitantly with second-dose measles-containing vaccine (MCV2). We examined MCV2 coverage in pre- and post-MACV introduction cohorts to describe observed changes regionally and nationally. METHODS: A nationwide household cluster survey of children 18-41 months of age was conducted 1 year after MACV introduction. Coverage was assessed by verification of vaccination cards or recall. Two age groups were included to compare MCV2 coverage pre-MACV introduction (30-41 months) versus post-MACV introduction (18-26 months). RESULTS: In total, 15 925 households were surveyed; 7796 children were enrolled, including 3684 30-41 months of age and 3091 18-26 months of age. Vaccination documentation was observed for 86% of children. The MACV routine coverage was 58% (95% confidence interval [CI], 56%-61%) with variation by region (41%-76%). The MCV2 coverage was 62% (95% CI, 59%-65%) pre-MACV introduction and 67% (95% CI, 64%-69%) post-MACV introduction, an increase of 4.5% (95% CI, 1.3%-7.7%). Among children who received routine MACV and MCV2, 93% (95% CI, 91%-94%) received both at the same visit. Lack of caregiver awareness about the 15- to 18-month visit and vaccine unavailability were common reported barriers to vaccination. CONCLUSIONS: A small yet significant increase in national MCV2 coverage was observed 1 year post-MACV introduction. The MACV/MCV2 coadministration was common. Findings will help inform strategies to strengthen second-year-of-life immunization coverage, including to address the communication and vaccine availability barriers identified.
Asunto(s)
Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis Serogrupo A/inmunología , Vacunas Conjugadas/administración & dosificación , Adolescente , Adulto , Femenino , Humanos , Programas de Inmunización , Esquemas de Inmunización , Lactante , Masculino , Vacunación Masiva , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/inmunología , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Cobertura de Vacunación , Vacunas Conjugadas/inmunología , Adulto JovenRESUMEN
Meningococcal meningitis remains a significant public health threat, especially in the African meningitis belt where Neisseria meningitidis serogroup A historically caused large-scale epidemics. With the rollout of a novel meningococcal serogroup A conjugate vaccine (MACV) in the belt, the World Health Organization recommended case-based meningitis surveillance to monitor MACV impact and meningitis epidemiology. In 2014, the MenAfriNet consortium was established to support strategic implementation of case-based meningitis surveillance in 5 key countries: Burkina Faso, Chad, Mali, Niger, and Togo. MenAfriNet aimed to develop a high-quality surveillance network using standardized laboratory and data collection protocols, develop sustainable systems for data management and analysis to monitor MACV impact, and leverage the surveillance platform to perform special studies. We describe the MenAfriNet consortium, its history, strategy, implementation, accomplishments, and challenges.
Asunto(s)
Informática Médica/métodos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , África/epidemiología , Geografía Médica , Humanos , Programas de Inmunización , Vacunas Meningococicas/administración & dosificación , Evaluación de Resultado en la Atención de Salud , Vigilancia de la PoblaciónRESUMEN
When the Global Polio Eradication Initiative (GPEI) began in 1988, cases of poliomyelitis were reported from 125 countries. Since then, only Afghanistan, Nigeria, and Pakistan have experienced uninterrupted transmission of wild poliovirus (WPV). The primary means of detecting poliovirus is through surveillance for acute flaccid paralysis (AFP) among children aged <15 years with testing of stool specimens for WPV and vaccine-derived polioviruses (VDPVs) in World Health Organization (WHO)-accredited laboratories of the Global Polio Laboratory Network (GPLN) (1,2). AFP surveillance is supplemented by environmental surveillance for polioviruses in sewage at selected locations. Analysis of genomic sequences of isolated polioviruses enables assessment of transmission by time and place, potential gaps in surveillance, and emergence of VDPVs (3). This report presents 2017-2018 poliovirus surveillance data, focusing on 31 countries* identified as high-priority countries because of a "high risk of poliovirus transmission and limited capacity to adequately address those risks" (4). Some of these countries are located within WHO regions with endemic polio, and others are in regions that are polio-free. In 2018, 26 (84%) of the 31 countries met AFP surveillance indicators nationally; however, subnational variation in surveillance performance was substantial. Surveillance systems need continued strengthening through monitoring, supervision, and improvements in specimen collection and transport to provide sufficient evidence for interruption of poliovirus circulation.
Asunto(s)
Erradicación de la Enfermedad , Salud Global/estadística & datos numéricos , Poliomielitis/prevención & control , Vigilancia de la Población/métodos , Enfermedad Aguda , Adolescente , Niño , Preescolar , Monitoreo del Ambiente , Heces/virología , Humanos , Lactante , Laboratorios , Parálisis/epidemiología , Poliomielitis/epidemiología , Poliovirus/aislamiento & purificaciónRESUMEN
BACKGROUND: The Democratic Republic of the Congo (DRC) bears a high burden of malaria, which is exacerbated in pregnant women. The VAR2CSA protein plays a crucial role in pregnancy-associated malaria (PAM), and hence quantifying diversity at the var2csa locus in the DRC is important in understanding the basic epidemiology of PAM, and in developing a robust vaccine against PAM. METHODS: Samples were taken from the 2013-14 Demographic and Health Survey conducted in the DRC, focusing on children under 5 years of age. A short subregion of the var2csa gene was sequenced in 115 spatial clusters, giving country-wide estimates of sequence polymorphism and spatial population structure. RESULTS: Results indicate that var2csa is highly polymorphic, and that diversity is being maintained through balancing selection, however, there is no clear signal of phylogenetic or geographic structure to this diversity. Linear modelling demonstrates that the number of var2csa variants in a cluster correlates directly with cluster prevalence, but not with other epidemiological factors such as urbanicity. CONCLUSIONS: Results suggest that the DRC fits within the global pattern of high var2csa diversity and little genetic differentiation between regions. A broad multivalent VAR2CSA vaccine candidate could benefit from targeting stable regions and common variants to address the substantial genetic diversity.
Asunto(s)
Antígenos de Protozoos/genética , Variación Genética , Plasmodium falciparum/genética , Preescolar , Análisis por Conglomerados , Estudios Transversales , República Democrática del Congo , Humanos , Lactante , Recién Nacido , Prevalencia , Análisis de Secuencia de ADN , Análisis EspacialRESUMEN
BACKGROUND: Neisseria meningitidis serogroup A disease in Burkina Faso has greatly decreased following introduction of a meningococcal A conjugate vaccine in 2010, yet other serogroups continue to pose a risk of life-threatening disease. Capsule switching among epidemic-associated serogroup A N. meningitidis strains could allow these lineages to persist despite vaccination. The introduction of new strains at the national or sub-national levels could affect the epidemiology of disease. METHODS: Isolates collected from invasive meningococcal disease in Burkina Faso between 2008 and 2012 were characterized by serogrouping and molecular typing. Genome sequences from a subset of isolates were used to infer phylogenetic relationships. RESULTS: The ST-5 clonal complex (CC5) was identified only among serogroup A isolates, which were rare after 2010. CC181 and CC11 were the most common clonal complexes after 2010, having serogroup X and W isolates, respectively. Whole-genome phylogenetic analysis showed that the CC181 isolates collected during and after the epidemic of 2010 formed a single clade that was closely related to isolates collected in Niger during 2005 and Burkina Faso during 2007. Geographic population structure was identified among the CC181 isolates, where pairs of isolates collected from the same region of Burkina Faso within a single year had less phylogenetic diversity than the CC181 isolate collection as a whole. However, the reduction of phylogenetic diversity within a region did not extend across multiple years. Instead, CC181 isolates collected during the same year had lower than average diversity, even when collected from different regions, indicating geographic mixing of strains across years. The CC11 isolates were primarily collected during the epidemic of 2012, with sparse sampling during 2011. These isolates belong to a clade that includes previously described isolates collected in Burkina Faso, Mali, and Niger from 2011 to 2015. Similar to CC181, reduced phylogenetic diversity was observed among CC11 isolate pairs collected from the same regions during a single year. CONCLUSIONS: The population of disease-associated N. meningitidis strains within Burkina Faso was highly dynamic between 2008 and 2012, reflecting both vaccine-imposed selection against serogroup A strains and potentially complex clonal waves of serogroup X and serogroup W strains.
Asunto(s)
Infecciones Meningocócicas , Neisseria meningitidis , Burkina Faso/epidemiología , Humanos , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Tipificación Molecular , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Estudios Retrospectivos , Serogrupo , SerotipificaciónRESUMEN
Improved water quality reduces diarrhea, but the impact of improved water quality on Ascaris and Trichuris, soil-transmitted helminths (STH) conveyed by the fecal-oral route, is less well described. To assess water quality associations with diarrhea and STH, we conducted a cross-sectional survey in households of south-eastern Guatemala. Diarrhea was self-reported in the past week and month. STH was diagnosed by stool testing using a fecal parasite concentrator method. We explored associations between Escherichia coli-positive source water (water quality) and disease outcomes using survey logistic regression models. Overall, 732 persons lived in 167 households where water was tested. Of these, 79.4% (581/732) had E. coli-positive water, 7.9% (58/732) had diarrhea within the week, 14.1% (103/732) had diarrhea within the month, and 6.6% (36/545) tested positive for Ascaris or Trichuris, including 1% (6/536) who also reported diarrhea. Univariable analysis found a statistically significant association between water quality and STH (odds ratio [OR] = 5.1, 95% confidence interval [CI] = 1.1-24.5) but no association between water quality and diarrhea. Waterborne transmission and effects of water treatment on STH prevalence should be investigated further. If a causal relationship is found, practices such as household water treatment including filtration might be useful adjuncts to sanitation, hygiene, and deworming in STH control programs.
Asunto(s)
Diarrea/epidemiología , Helmintiasis/epidemiología , Animales , Estudios Transversales , Exposición a Riesgos Ambientales , Escherichia coli , Guatemala/epidemiología , Humanos , Prevalencia , Suelo , Calidad del AguaRESUMEN
On April 25, 2017, a cluster of unexplained illness and deaths among persons who had attended a funeral during April 21-22 was reported in Sinoe County, Liberia (1). Using a broad initial case definition, 31 cases were identified, including 13 (42%) deaths. Twenty-seven cases were from Sinoe County (1), and two cases each were from Grand Bassa and Monsterrado counties, respectively. On May 5, 2017, initial multipathogen testing of specimens from four fatal cases using the Taqman Array Card (TAC) assay identified Neisseria meningitidis in all specimens. Subsequent testing using direct real-time polymerase chain reaction (PCR) confirmed N. meningitidis in 14 (58%) of 24 patients with available specimens and identified N. meningitidis serogroup C (NmC) in 13 (54%) patients. N. meningitidis was detected in specimens from 11 of the 13 patients who died; no specimens were available from the other two fatal cases. On May 16, 2017, the National Public Health Institute of Liberia and the Ministry of Health of Liberia issued a press release confirming serogroup C meningococcal disease as the cause of this outbreak in Liberia.
Asunto(s)
Brotes de Enfermedades , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/microbiología , Neisseria meningitidis Serogrupo C/aislamiento & purificación , Servicios de Laboratorio Clínico/estadística & datos numéricos , Análisis por Conglomerados , Humanos , Liberia/epidemiología , Meningitis Meningocócica/mortalidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de TiempoRESUMEN
BACKGROUND: While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013-2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. RESULTS: Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013-4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. CONCLUSION: The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method.
Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Ensayo de Inmunoadsorción Enzimática/métodos , Microscopía/métodos , Plasmodium vivax/efectos de los fármacos , Cambodia , Variaciones en el Número de Copia de ADN , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esquizontes/crecimiento & desarrolloRESUMEN
BACKGROUND: To eliminate malaria, surveillance for submicroscopic infections is needed. Molecular methods can detect submicroscopic infections but have not hitherto been amenable to implementation in surveillance programs. A portable loop-mediated isothermal amplification assay called RealAmp was assessed in 2 areas of low malaria transmission. METHODS: RealAmp was evaluated in 141 patients from health clinics in India (passive surveillance) and in 127 asymptomatic persons in Thailand (active surveillance). The diagnostic validity, precision, and predictive value of RealAmp were determined using polymerase chain reaction (PCR) as the reference method. A pilot study of RealAmp was also performed on samples from patients presenting at a Thai health center. RESULTS: A total of 96 and 7 positive cases were detected in India and Thailand, respectively, via PCR. In comparison with nested PCR, the sensitivity and specificity of RealAmp in India were 94.8% (95% confidence interval [CI], 88.3%-98.3%) and 100% (95% CI, 92.1%-100%), respectively, with correct identification of all 5 Plasmodium vivax cases. In Thailand, compared with pooled real-time PCR, RealAmp demonstrated 100% sensitivity (95% CI, 59.0%-100%) and 96.7% specificity (95% CI, 91.7%-99.1%). Testing at the health center demonstrated RealAmp's potential to serve as a point-of-care test with results available in 30-75 minutes. CONCLUSION: RealAmp was comparable to PCR in detecting malaria parasites and shows promise as a tool to detect submicroscopic infections in malaria control and elimination programs worldwide.
Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , India/epidemiología , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Tailandia/epidemiología , Adulto JovenRESUMEN
Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations.
Asunto(s)
ADN Protozoario/genética , Brotes de Enfermedades , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Filogenia , Plasmodium falciparum/genética , Antimaláricos/uso terapéutico , República Democrática del Congo/epidemiología , Resistencia a Medicamentos , Genética de Población , Genotipo , Guatemala/epidemiología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Personal Militar , Plasmodium falciparum/clasificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , ViajeRESUMEN
Pneumocystis jirovecii is a symbiotic respiratory fungus that causes pneumonia (PcP) in immunosuppressed patients. Because P. jirovecii cannot be reliably cultured in vitro, it has proven difficult to study and gaps in our understanding of the organism persist. The release of a draft genome for the organism opens the door for the development of new genotyping approaches for studying its molecular epidemiology and global population structure. We identified and validated 8 putatively neutral microsatellite markers and 1 microsatellite marker linked to the dihydropteroate synthase gene (dhps), the enzymatic target of sulfa drugs used for PcP prevention and treatment. Using these tools, we analyzed P. jirovecii isolates from HIV-infected patients from three geographically distant populations: Uganda, the United States, and Spain. Among the 8 neutral markers, we observed high levels of allelic heterozygosity (average He, 0.586 to 0.842). Consistent with past reports, we observed limited global population structuring, with only the Ugandan isolates showing minor differentiation from the other two populations. In Ugandan isolates that harbored mutations in dhps, the microsatellite locus linked to dhps demonstrated a depressed He, consistent with positive directional selection for sulfa resistance mutations. Using a subset of these microsatellites, analyses of individual and paired samples from infections in San Francisco, CA, showed reliable typeability within a single infection and high discriminatory power between infections. These features suggest that this novel microsatellite typing approach will be an effective tool for molecular-epidemiological investigations into P. jirovecii population structure, transmission, and drug resistance.
Asunto(s)
Genes Fúngicos/genética , Sitios Genéticos/genética , Repeticiones de Microsatélite/genética , Pneumocystis carinii/genética , Neumonía por Pneumocystis/epidemiología , Dihidropteroato Sintasa/genética , Genotipo , Humanos , Epidemiología Molecular/métodos , Mutación/genética , Neumonía por Pneumocystis/microbiología , España/epidemiología , Uganda/epidemiología , Estados Unidos/epidemiologíaRESUMEN
Background: An increased pertussis burden has been demonstrated among Hispanic or Latino and American Indian or Alaska Native (AI/AN) infants. However, data on potential disparities among other age and racial groups are limited. Methods: We analyzed pertussis cases reported through Enhanced Pertussis Surveillance from 2010 to 2017. Pertussis and severe pertussis incidence were calculated by race (White, Black or African American, AI/AN, and Asian or Pacific Islanders), ethnicity (Hispanic or Latino and non-Hispanic or non-Latino), and age. Results: Compared with White persons, overall incidence was lower among Black or African American (incidence rate ratio [IRR], .57; 95% confidence interval [CI], .53-.61), AI/AN (IRR, 0.65; 95% CI, .58-.72), and Asian or Pacific Islander persons (IRR, 0.39; 95% CI, .35-.43). Overall incidence of pertussis was higher (1.5-fold; 95% CI, 1.37-1.60) among Hispanic or Latino compared with non-Hispanic or non-Latino adults, potentially related to household size or lower pertussis vaccine uptake among adult Hispanic or Latino cases. Severe pertussis incidence was similar among Black or African American and AI/AN persons compared with White persons. Among infants, severe pertussis incidence was 1.4-fold higher (95% CI, 1.03-1.82) among Black or African American infants than among White infants, and 2.1-fold higher (95% CI, 1.67-2.57) among Hispanic or Latino infants than non-Hispanic or non-Latino infants. Conclusions: The contrast between lower reported incidence but similar or higher severe pertussis incidence among Black or African American and AI/AN persons compared with White persons warrants further investigation and may reflect underdiagnosis or underreporting of mild disease.
RESUMEN
BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention.
Asunto(s)
Inmunidad Mucosa , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Humanos , Lactante , Bangladesh , Poliovirus , Vacuna Antipolio de Virus Inactivados/efectos adversos , Estados Unidos , Poliomielitis/prevención & controlRESUMEN
BACKGROUND: Rapid diagnostic tests (RDTs) are central to fulfilling the WHO's recommendation for parasitologic confirmation of all suspected cases of malaria. RDT performance may be compromised when exposed to the high temperature conditions typical of most malaria endemic regions. However, a systematic method to monitor RDT quality and performance in endemic countries is lacking at the present time. Current methods to monitor RDT performance in the field include comparing results from RDTs to diagnoses made by light microscopy and observing health workers perform tests. These methods are not substitutes for direct quality control. In this study, the suitability of dried Plasmodium falciparum-infected blood as quality control samples for malaria RDTs was evaluated. METHODS: Three cultured strains of P. falciparum at 200 and 2,000 parasites/µl were tested on 10 brands of RDT. After baseline testing to determine initial reactivity, aliquots of parasite-infected blood were air dried, stored at 35°C, room temperature (~25°C) or 4°C for one, four and 12 weeks and were then tested on the 10 RDTs after rehydration. Extended stability testing of dried blood stored at 4°C was done using P. falciparum strain 3D7 at 1,000 and 2,000 parasites/µl. RESULTS: All dried blood samples at 2,000 parasites/µl retained reactivity (100% sensitivity) at all three temperatures and time points for all nine RDT brands that detect histidine-rich protein-2 (HRP2). The dried blood samples with 200 parasites/µl were detected by six of the nine HRP2-based RDTs at all storage temperatures and time points. The sensitivity for two of the three remaining HRP2-based RDTs was 100% up to four weeks of storage at all temperatures but dropped to 87.5% at week 12. Of the four RDTs that detect plasmodium lactate dehydrogenase (pLDH) in a pan-specific manner, alone or in combination with HRP2, the detection of pLDH in samples with 2,000 parasites/µL was 100% for two RDTs and 80% for the other two RDTs. The mean level for detection of pLDH at 200 parasites/µl was low (29%), with a range of 0% to100%, which was partly attributable to weak initial baseline reactivity. Reactivity of dried 3D7 at 1,000 and 2,000 parasites/µl stored at 4°C was retained at 100% for up to 52 weeks for both HRP2 and pLDH. CONCLUSIONS: In the absence of native or recombinant positive control antigens, well-standardized P. falciparum-infected dried blood samples can be used as positive control samples for monitoring RDT performance, particularly with HRP2-detecting tests.
Asunto(s)
Desecación , Pruebas Diagnósticas de Rutina/métodos , Pruebas Diagnósticas de Rutina/normas , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Manejo de Especímenes/métodos , Antígenos de Protozoos/análisis , Humanos , Control de CalidadRESUMEN
BACKGROUND: In March 2017, Burkina Faso introduced meningococcal serogroup A conjugate vaccine (MACV) into the Expanded Programme on Immunization. MACV is administered to children aged 15-18 months, concomitantly with the second dose of measles-containing vaccine (MCV2). One year after MACV introduction, we assessed the sources and content of immunization information available to caregivers and explored motivations and barriers that influence their decision to seek MACV for their children. METHODS: Twenty-four focus group discussions (FGDs) were conducted with caregivers of children eligible for MACV and MCV2. Data collection occurred in February-March 2018 in four purposively selected districts, each from a separate geographic region; within each district, caregivers were stratified into groups based on whether their children were unvaccinated or vaccinated with MACV. FGDs were recorded and transcribed. Transcripts were coded and analyzed using qualitative content analysis. RESULTS: We identified many different sources and content of information about MACV and MCV2 available to caregivers. Healthcare workers were most commonly cited as the main sources of information; caregivers also received information from other caregivers in the community. Caregivers' motivations to seek MACV for their children were driven by personal awareness, engagements with trusted messengers, and perceived protective benefits of MACV against meningitis. Barriers to MACV and MCV2 uptake were linked to the unavailability of vaccines, immunization personnel not providing doses, knowledge gaps about the 15-18 month visit, practical constraints, past negative experiences, sociocultural influences, and misinformation, including misunderstanding about the need for MCV2. CONCLUSIONS: MACV and MCV2 uptake may be enhanced by addressing vaccination barriers and effectively communicating vaccination information and benefits through trusted messengers such as healthcare workers and other caregivers in the community. Educating healthcare workers to avoid withholding vaccines, likely due to fear of wastage, may help reduce missed opportunities for vaccination.