Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 299(6): 104713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061003

RESUMEN

Heparan sulfate (HS) is a long, linear polysaccharide that is ubiquitously expressed in all animal cells and plays a key role in many cellular processes, including cell signaling and development. Dysregulation of HS assembly has been implicated in pathophysiological conditions, such as tumorigenesis and rare genetic disorders. HS biosynthesis occurs in a non-template-driven manner in the endoplasmic reticulum and Golgi through the activity of a large group of biosynthetic enzymes. While much is known about its biosynthesis, little is understood about the regulation of HS assembly across diverse tissue types and disease states. To address this gap in knowledge, we recently performed genome-wide CRISPR/Cas9 screens to identify novel regulatory factors of HS biosynthesis. From these screens, we identified the alpha globin transcription factor, TFCP2, as a top hit. To investigate the role of TFCP2 in HS assembly, we targeted TFCP2 expression in human melanoma cells using the CRISPR/Cas9 system. TFCP2 knockout cells exhibited decreased fibroblast growth factor binding to cell surface HS, alterations in HS composition, and slowed cell growth compared to wild-type cells. Additionally, RNA sequencing revealed that TFCP2 regulates the expression of multiple enzymes involved in HS assembly, including the secreted endosulfatase, SULF1. Pharmacological targeting of TFCP2 activity similarly reduced growth factor binding and increased SULF1 expression, and the knockdown of SULF1 expression in TFCP2 mutant cells restored melanoma cell growth. Overall, these studies identify TFCP2 as a novel transcriptional regulator of HS and highlight HS-protein interactions as a possible target to slow melanoma growth.


Asunto(s)
Heparitina Sulfato , Melanoma , Animales , Humanos , Heparitina Sulfato/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Proliferación Celular , Melanoma/genética , Proteínas de Unión al ADN/metabolismo
2.
Am J Physiol Cell Physiol ; 322(5): C849-C864, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294848

RESUMEN

Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.


Asunto(s)
Genómica , Glicosaminoglicanos , Animales , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Glicosilación , Homeostasis , Humanos , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA