Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38582079

RESUMEN

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas , Tauopatías , Proteínas tau , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Neuronas/metabolismo , Neuronas/patología , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Diferenciación Celular , Mutación , Autofagia
2.
Sci Rep ; 14(1): 144, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167993

RESUMEN

Evidence suggests that beta-amyloid (Aß)-induced phosphorylation/aggregation of tau protein plays a critical role in the degeneration of neurons and development of Alzheimer's disease (AD), the most common cause of dementia affecting the elderly population. Many studies have pursued a variety of small molecules, including nanoparticles conjugated with drugs to interfere with Aß and/or tau aggregation/toxicity as an effective strategy for AD treatment. We reported earlier that FDA approved PLGA nanoparticles without any drug can attenuate Aß aggregation/toxicity in cellular/animal models of AD. In this study, we evaluated the effects of native PLGA on Aß seed-induced aggregation of tau protein using a variety of biophysical, structural and spectroscopic approaches. Our results show that Aß1-42 seeds enhanced aggregation of tau protein in the presence and absence of heparin and the effect was attenuated by native PLGA nanoparticles. Interestingly, PLGA inhibited aggregation of both 4R and 3R tau isoforms involved in the formation of neurofibrillary tangles in AD brains. Furthermore, Aß seed-induced tau aggregation in the presence of arachidonic acid was suppressed by native PLGA. Collectively, our results suggest that native PLGA nanoparticles can inhibit the Aß seed-induced aggregation of different tau protein isoforms highlighting their therapeutic implication in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Fosforilación
3.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712164

RESUMEN

The Christchurch mutation (R136S) on the APOE3 (E3S/S) gene is associated with low tau pathology and slowdown of cognitive decline despite the causal PSEN1 mutation and high levels of amyloid beta pathology in the carrier1. However, the molecular effects enabling E3S/S mutation to confer protection remain unclear. Here, we replaced mouse Apoe with wild-type human E3 or E3S/S on a tauopathy background. The R136S mutation markedly mitigated tau load and protected against tau-induced synaptic loss, myelin loss, and spatial learning. Additionally, the R136S mutation reduced microglial interferon response to tau pathology both in vivo and in vitro, suppressing cGAS-STING activation. Treating tauopathy mice carrying wild-type E3 with cGAS inhibitor protected against tau-induced synaptic loss and induced similar transcriptomic alterations to those induced by the R136S mutation across brain cell types. Thus, cGAS-STING-IFN inhibition recapitulates the protective effects of R136S against tauopathy.

4.
STAR Protoc ; 4(1): 101930, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36520626

RESUMEN

Large-scale, site-directed mutagenesis enables rapid characterization of the biochemical and biological properties of proteins. Here, we present a cost-effective and adaptable cloning pipeline to generate arrayed gene libraries for a construct of interest. We detail steps to use an open access web app to automate the design of mutagenesis primers optimized for our cloning protocols in a 96-well plate format. The protocol allows most molecular biology labs to clone 96 mutants (from PCR to sequence ready plasmid) in 3 days.


Asunto(s)
Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Biblioteca de Genes , Mutagénesis , Mutagénesis Sitio-Dirigida , Clonación Molecular
5.
ACS Chem Neurosci ; 14(24): 4282-4297, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38054595

RESUMEN

The accumulation of tau fibrils is associated with neurodegenerative diseases, which are collectively termed tauopathies. Cryo-EM studies have shown that the packed fibril core of tau adopts distinct structures in different tauopathies, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy. A subset of tauopathies are linked to missense mutations in the tau protein, but it is not clear whether these mutations impact the structure of tau fibrils. To answer this question, we developed a high-throughput protein purification platform and purified a panel of 37 tau variants using the full-length 0N4R splice isoform. Each of these variants was used to create fibrils in vitro, and their relative structures were studied using a high-throughput protease sensitivity platform. We find that a subset of the disease-associated mutations form fibrils that resemble wild-type tau, while others are strikingly different. The impact of mutations on tau structure was not clearly associated with either the location of the mutation or the relative kinetics of fibril assembly, suggesting that tau mutations alter the packed core structures through a complex molecular mechanism. Together, these studies show that single-point mutations can impact the assembly of tau into fibrils, providing insight into its association with pathology and disease.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo , Mutación/genética
6.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961594

RESUMEN

Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.

7.
bioRxiv ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37745431

RESUMEN

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to lack of appropriate human models. Current human induced pluripotent stem cell (hiPSC)-derived neurons express very low levels of 4-repeat (4R)-tau isoforms that are normally expressed in adult brain. Here, we engineered new iPSC lines to express 4R-tau and 4R-tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes, including shared transcriptomic signatures, autophagic body accumulation, and impaired neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of Tau-seeding-induced Tau propagation, including retromer VPS29 and the UFMylation cascade as top modifiers. In AD brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade suppressed seeding-induced Tau propagation. This model provides a powerful platform to identify novel therapeutic strategies for 4R tauopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA