Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Syst Evol Microbiol ; 66(2): 968-974, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637818

RESUMEN

A total of 17 Enterobacter-like isolates were obtained from blood during a septicaemia outbreak in a neonatal unit, Tanzania, that could not be assigned based on phenotypic test to any existing Enterobacter species. Eight representative outbreak isolates were investigated in detail. Fermentation characteristics, biochemical assays and fatty acid profiles for taxonomic analysis were determined and supplemented with information derived from whole genome sequences. Phenotypic and morphological tests revealed that these isolates were Gram-stain-negative, rod-shaped, highly motile and facultatively anaerobic. The fatty acid profile was similar to those of the type strains for all recognized Enterobacter species, with quantitative differences in C17 : 0, C18 : 1ω7c and C17 : 0 cyclo fatty acids. Whole genome sequencing was used to identify taxonomically relevant characteristics, i.e. for 16S rRNA gene sequence analysis, multi-locus sequence analysis (MLSA), in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI). Draft genomes were approximately 4.9 Mb in size with a G+C content of 56.0 mol%. The 16S rRNA gene sequence of these eight isolates showed >97 % similarity to all Enterobacter species, while MLSA clustered them closely with the type strains of Enterobacter xiangfangensis and Enterobacter hormaechei. These eight strains showed less than 70 % isDDH identity with the type strains of Enterobacter species. In addition, less than 95 % ANI to the type strains of Enterobacter species was observed. From these results, it is concluded that these isolates possess sufficient characteristics to differentiate them from all recognized Enterobacter species, and should therefore be considered as representing a novel species. The name Enterobacter bugandensis sp. nov. is proposed with EB-247T ( = DSM 29888T = NCCB 100573T) as the type strain.

2.
Appl Environ Microbiol ; 81(23): 8054-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386064

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than -1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K(+) binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.


Asunto(s)
Ácidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/genética , Transcriptoma , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Mutación , Salmonella typhimurium/metabolismo , Análisis de Secuencia de ARN , Virulencia
3.
BMC Microbiol ; 13: 236, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24148706

RESUMEN

BACKGROUND: Development of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity. However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be attenuated with improved safety and immune efficacy or not. RESULTS: We deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14 (an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2-/- and Il-10-/- when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV, mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not show any systemic infection in immunocompromised mice. CONCLUSIONS: This study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of heterologous antigens and thus for development of a polyvalent vaccine strain.


Asunto(s)
Sistemas de Secreción Bacterianos , Salmonelosis Animal/prevención & control , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Animales , Anticuerpos Antibacterianos/análisis , Anticuerpos Antibacterianos/sangre , Modelos Animales de Enfermedad , Eliminación de Gen , Inmunidad Mucosa , Huésped Inmunocomprometido , Inmunoglobulina A Secretora/análisis , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Vacunas contra la Salmonella/administración & dosificación , Vacunas contra la Salmonella/efectos adversos , Vacunas contra la Salmonella/genética , Salmonella typhimurium/patogenicidad , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
4.
Oncoimmunology ; 8(3): 1558663, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723591

RESUMEN

Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.

5.
Sci Rep ; 8(1): 5392, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599516

RESUMEN

Nosocomial pathogens can cause life-threatening infections in neonates and immunocompromised patients. E. bugandensis (EB-247) is a recently described species of Enterobacter, associated with neonatal sepsis. Here we demonstrate that the extended spectrum ß-lactam (ESBL) producing isolate EB-247 is highly virulent in both Galleria mellonella and mouse models of infection. Infection studies in a streptomycin-treated mouse model showed that EB-247 is as efficient as Salmonella Typhimurium in inducing systemic infection and release of proinflammatory cytokines. Sequencing and analysis of the complete genome and plasmid revealed that virulence properties are associated with the chromosome, while antibiotic-resistance genes are exclusively present on a 299 kb IncHI plasmid. EB-247 grew in high concentrations of human serum indicating septicemic potential. Using whole genome-based transcriptome analysis we found 7% of the genome was mobilized for growth in serum. Upregulated genes include those involved in the iron uptake and storage as well as metabolism. The lasso peptide microcin J25 (MccJ25), an inhibitor of iron-uptake and RNA polymerase activity, inhibited EB-247 growth. Our studies indicate that Enterobacter bugandensis is a highly pathogenic species of the genus Enterobacter. Further studies on the colonization and virulence potential of E. bugandensis and its association with septicemic infection is now warranted.


Asunto(s)
Enterobacter/genética , Infecciones por Enterobacteriaceae/patología , Genoma Bacteriano , Animales , Antibacterianos/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacter/fisiología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/mortalidad , Humanos , Ratones , Antígenos O/química , Antígenos O/inmunología , Plásmidos/genética , Plásmidos/metabolismo , Tasa de Supervivencia , Transcriptoma , Virulencia/genética , beta-Lactamas/metabolismo
6.
Gut Pathog ; 7: 24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346801

RESUMEN

BACKGROUND: Salmonella enterica serovar Enteritidis, the most common cause of human gastroenteritis, employs several virulence factors including lipopolysaccharide (LPS) for infection and establishment of disease inside the host. The LPS of S. enterica serovar Enteritidis consists of lipid A, core oligosaccharide and O-antigen (OAg). The OAg consists of repeating units containing different sugars. The sugars of OAg are synthesized and assembled by a set of enzymes encoded by genes organized into clusters. Present study focuses on the effect of deletion of genes involved in biosynthesis of OAg repeating units on resistance to antimicrobial peptides and virulence in mice. METHODS: In the present study, the OAg biosynthesis was impaired by deleting tyv, prt and wbaV genes involved in tyvelose biosynthesis and its transfer to OAg. The virulence phenotype of resulting mutants was evaluated by assessing resistance to antimicrobial peptides, serum complement, adhesion, invasion and in vivo colonization. RESULTS: Deletion of the above three genes resulted in the production of OAg-negative LPS. All the OAg-negative mutants showed phenotype reported for rough strains. Interestingly, ΔwbaV mutant showed increased resistance against antimicrobial peptides and normal human serum. In addition, the ΔwbaV mutant also showed increased adhesion and invasion as compared to the other two O-Ag negative mutants Δtyv and Δprt. In vivo experiments also confirmed the increased virulent phenotype of ΔwbaV mutant as compared to Δprt mutant. CONCLUSION: OAg-negative mutants are known to be avirulent; however, this study demonstrates that certain OAg negative mutants e.g. ∆wbaV may also show resistance to antimicrobial peptides and cause colitis in Streptomyces pretreated mouse model.

7.
Virulence ; 5(2): 311-20, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24401482

RESUMEN

Non-typhoidal Salmonella (NTS) infections are emerging as leading problem worldwide and the variations in host immune status append to the concern of NTS. Salmonella enterica serovar Typhimurium is one of the causative agents of NTS infections and has been extensively studied. The inactivation of Salmonella pathogenicity island 2 (SPI2) encoded type-III secretion system 2 (TTSS2) has been reported rendering the strain incapable for systemic dissemination to host sites and has also been proposed as live-attenuated vaccine. However, infections from TTSS2-deficient Salmonella have also been reported. In this study, mutant strain MT15 was developed by inactivation of the hemolysin expression modulating protein (hha) in TTSS2-deficient S. Typhimurium background. The MT15 strain showed significant level of attenuation in immune-deprived murine colitis model when tested in iNos(-/-), IL10(-/-), and CD40L(-/-) mice groups in C57BL/6 background. Further, the mutation in hha does not implicate any defect in bacterial colonization to the host gut. The long-term infection of developed mutant strain conferred protective immune responses to suitably immunized streptomycin pre-treated C57BL/6 mice. The immunization enhanced the CD4(+) and CD8(+) cell types involved in bacterial clearance. The serum IgG and luminal secretory IgA (sIgA) was also found to be elevated after the due course of infection. Additionally, the immunized C57BL/6 mice were protected from the subsequent lethal infection of Salmonella Typhimurium. Collectively, these findings implicate the involvement of hemolysin expression modulating protein (Hha) in establishment of bacterial infection. In light of the observed attenuation of the developed mutant strain, this study proposes the possible significance of SPI2-deficient hha mutant as an alternative live-attenuated vaccine strain for use against lethal Salmonella infections.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Proteínas de Unión al ADN/deficiencia , Huésped Inmunocomprometido , Infecciones por Salmonella/patología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Animales , Anticuerpos Antibacterianos/análisis , Anticuerpos Antibacterianos/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Tracto Gastrointestinal/inmunología , Inmunoglobulina A Secretora/sangre , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/inmunología , Análisis de Supervivencia , Virulencia
8.
Microbes Infect ; 15(1): 66-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159244

RESUMEN

The type-III secretion system-I (T3SS-I) of Salmonella enterica serovar Typhimurium (S. Typhimurium) is an essential component to mediate active invasion and subsequent inflammation in genetically susceptible C57BL/6 mice. S. Typhimurium translocates its effector proteins through Salmonella Pathogenicity Island-I (SPI-I) encoded T3SS-I needle complex. This study focuses on invH gene of S. Typhimurium, which plays an active role in SPI-I mediated effector protein translocation. The deletion of invH gene in S. Typhimurium reduced the invasion efficiency of the bacterium to 70-80% as compared to wild-type S. Typhimurium (SB300) in vitro. To further investigate the role of invH gene exclusively in SPI-1 mediated inflammation, C57BL/6 mice were infected with S. Typhimurium double mutant deficient in invH and ssaV. Results indicated significant difference in the degree of cecal inflammation between wild-type S. Typhimurium and double mutant at 12 h and 48 h post infection. However this difference was found to be more prominent at 12 h p.i. In line with our findings, analysis of effector protein secretion in invH, ssaV double mutant showed reduced secretion of Sip effector proteins (SipA, SipB, SipC and SipD) as compared to the wild-type strain. The inflammation phenotype was restored on complementing invH to its respective double mutant strain. Altogether, the current study proposes a possible role of invH gene in early cecal inflammation by Salmonella Typhimurium in mice colitis model.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/fisiología , Salmonella typhimurium/fisiología , Análisis de Varianza , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Traslocación Bacteriana , Ciego/microbiología , Ciego/patología , Prueba de Complementación Genética , Islas Genómicas , Células HCT116 , Interacciones Huésped-Patógeno , Humanos , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/microbiología , Ganglios Linfáticos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Eliminación de Secuencia
9.
PLoS One ; 7(12): e52043, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284865

RESUMEN

Salmonella enterica serovar Typhimurium has been extensively exploited as live attenuated vaccines (LAV) which generally confers better protection than killed or subunit vaccines. However, many LAV are limited by their inherent ability to access systemic organs in many of the vaccinated hosts, especially those which are immunocompromised. We evaluated the efficacy of a live-attenuated SPI2-deficient (ΔssaV) S. Typhimurium vaccine candidate (MT13) that additionally devoids the ferric uptake regulator (fur). We used specific pathogen free (SPF) streptomycin-pretreated mouse colitis model that included healthy C57BL/6 and immunocompromised iNos(-/-), IL10(-/-) and CD40L(-/-) in the background of C57BL/6 mice to assess the efficacy of developed vaccine candidate. In our study, the S. Typhimurium MT13 strain was established as a safe vaccine candidate to be administered in immunocompromised mice as it was found to be systemically attenuated without conferring significant pathological signs and growth defect within the host. In bacterial challenge experiment, the MT13-vaccinated C57BL/6 mice were protected from subsequent wild-type S. Typhimurium infection by inducing proficient mucosal immunity. The MT13 strain elicited efficient O-antigen specific mucosal secretory IgA associated protective response which was comparable with its parental ssaV mutant. Vaccination with MT13 also showed proficient T-cell activation in host mice; which has direct relation with pathogen clearance from host tissues. Collectively, these data implicate the possible application of SPI-2 deficient fur mutant (MT13) as a novel live attenuated vaccine strain with adept immunogenicity and improved safety, even in immunocompromised hosts. Further, this vaccine candidate can be employed to express heterologous antigens targeted against several other diseases, especially related to enterocolitic pathogens.


Asunto(s)
Huésped Inmunocomprometido , Salmonelosis Animal/inmunología , Salmonelosis Animal/prevención & control , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Modelos Animales de Enfermedad , Inmunización , Inmunoglobulina A Secretora/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Intestinos/inmunología , Intestinos/microbiología , Activación de Linfocitos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Vacunas contra la Salmonella/genética , Salmonella typhimurium/genética , Linfocitos T/inmunología , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA