Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Biomark Res ; 11(1): 32, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941700

RESUMEN

BACKGROUND: Recent massive sequencing studies have revealed that SWI/SNF complexes are among the most frequently altered functional entities in solid tumors. However, the role of SWI/SNF in acute myeloid leukemia is poorly understood. To date, SWI/SNF complexes are thought to be oncogenic in AML or, at least, necessary to support leukemogenesis. However, mutation patterns in SWI/SNF genes in AML are consistent with a tumor suppressor role. Here, we study the SWI/SNF subunit BCL7A, which has been found to be recurrently mutated in lymphomas, but whose role in acute myeloid malignancies is currently unknown. METHODS: Data mining and bioinformatic approaches were used to study the mutational status of BCL7A and the correlation between BCL7A expression and promoter hypermethylation. Methylation-specific PCR, bisulfite sequencing, and 5-aza-2'-deoxycytidine treatment assays were used to determine if BCL7A expression was silenced due to promoter hypermethylation. Cell competition assays after BCL7A expression restoration were used to assess the role of BCL7A in AML cell line models. Differential expression analysis was performed to determine pathways and genes altered after BCL7A expression restoration. To establish the role of BCL7A in tumor development in vivo, tumor growth was compared between BCL7A-expressing and non-expressing mouse xenografts using in vivo fluorescence imaging. RESULTS: BCL7A expression was inversely correlated with promoter methylation in three external cohorts: TCGA-LAML (N = 160), TARGET-AML (N = 188), and Glass et al. (2017) (N = 111). The AML-derived cell line NB4 silenced the BCL7A expression via promoter hypermethylation. Ectopic BCL7A expression in AML cells decreased their competitive ability compared to control cells. Additionally, restoration of BCL7A expression reduced tumor growth in an NB4 mouse xenograft model. Also, differential expression analysis found that BCL7A restoration altered cell cycle pathways and modified significantly the expression of genes like HMGCS1, H1-0, and IRF7 which can help to explain its tumor suppressor role in AML. CONCLUSIONS: BCL7A expression is silenced in AML by promoter methylation. In addition, restoration of BCL7A expression exerts tumor suppressor activity in AML cell lines and xenograft models.

3.
Cancers (Basel) ; 12(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321963

RESUMEN

Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA