Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37991108

RESUMEN

The experiment objective was to evaluate the impact of xylanase over time on viscosity and digestibility in growing pigs fed corn-based fiber. Twenty gilts with an initial body weight of 30.6 ±â€…0.2 kg (n = 5 per dietary treatment) were fitted with t-cannulae in the medial jejunum and terminal ileum, housed individually, and randomly assigned to one of four dietary treatments: low-fiber control (LF) with 10.4% total dietary fiber (TDF), 30% corn bran high-fiber control (HF; 26.4% TDF), HF + 100 mg xylanase/kg (XY; Econase XT 25P; AB Vista, Marlborough, UK), and HF + 50 mg arabinoxylan-oligosaccharide/kg (AX). Gilts were limit fed for three 17 d periods (P1, P2, P3); each included 5 d adaptation, 2 d fecal collection, 3 d ileal collection, 3 d jejunal collection, and 4 d related rate of passage study. Data were analyzed as repeated measures using a linear mixed model with surgery date as a random effect, and dietary treatment, period, and their interaction as fixed effects. Jejunal and ileal digesta viscosity did not differ among dietary treatments or periods (P > 0.10). There was a dietary treatment × period interaction for the apparent jejunal digestibility (AJD) of dry matter (DM), gross energy (GE), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), total arabinoxylan (T-AX), total non-starch polysaccharide (T-NSP), and TDF (P≤ 0.05). In P1, LF had the greatest AJD of DM (15.5%), and relative to HF and AX, XY decreased it (9.3%, 10.1 %, and 6.3%, respectively). In P2, the AJD of DM in XY was greater than HF (11.7% vs. 9.1%) but did not differ from AX (10.5%). Relative to HF, in P3, XY increased AJD of DM (11.7 vs 15.3%), and AX decreased it (7.2%). For the AJD of NDF, AX performed intermediately in P1; in P2, relative to HF, XY, and AX increased the AJD of NDF (8.4%, 13.1%, and 11.7%, respectively), and in P3, XY, and LF did not differ (13.6 vs. 14.4%). A similar response was observed for the AJD of IDF and TDF, except for XY having the greatest AJD of IDF, T-AX, T-NSP, and TDF in P3 (P < 0.05). Compared to LF, irrespective of period, HF decreased the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of IDF, TDF, and NDF (P < 0.05). Relative to HF, XY partially mitigated this effect, improving the AID and ATTD of TDF, IDF, and NDF (P < 0.05). Increased corn-based fiber decreased nutrient digestibility, but XY partially mitigated that effect in the small intestine through enhanced fiber digestibility when given sufficient adaptation time.


This study investigated the effects of xylanase and arabinoxylan-oligosaccharide supplementation on viscosity, nutrient and energy digestibility in growing pigs fed a high-fiber diet mainly composed of corn over three time periods. Twenty pigs were surgically fitted with cannula in their jejunum and ileum for sample collection. The pigs were randomly assigned to one of four dietary treatment groups: low-fiber control, high-fiber control, xylanase supplementation, and arabinoxylan-oligosaccharide supplementation. The results showed no significant differences in digesta viscosity among dietary treatments. However, there was an interaction between dietary treatment and time for the digestibility of dry matter, gross energy, and dietary fibers. Initially, xylanase did not impact digestibility, but it improved over time. Conversely, arabinoxylan-oligosaccharide initially improved digestibility but declined by the third period. Findings suggest that the efficacy of xylanase in enhancing nutrient and energy digestibility in pigs fed high-fiber diets may depend on the length of the adaptation period. Xylanase supplementation also demonstrated the potential to counteract the negative effects of high-fiber diets. Further research is needed to optimize the application of xylanase in swine production and determine the optimal conditions for its effectiveness.


Asunto(s)
Digestión , Nutrientes , Xilanos , Porcinos , Animales , Femenino , Digestión/fisiología , Viscosidad , Microscopía Electrónica de Rastreo/veterinaria , Sus scrofa , Dieta/veterinaria , Fibras de la Dieta , Íleon/fisiología , Intestino Grueso , Oligosacáridos , Zea mays , Alimentación Animal/análisis
2.
Transl Anim Sci ; 6(3): txac063, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35854972

RESUMEN

The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.

3.
Transl Anim Sci ; 5(2): txab080, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34189419

RESUMEN

The approach of this experiment was to apply the regression method for the estimation of endogenous intestinal losses of ether extract (EEE) when pigs are fed complete diets ad libitum and using dietary levels of fat typical of those employed in commercial situations. A total of 40 gilts (PIC 337 sires × C22 or C29) were allotted to individual pens and randomly assigned to diets (8 pigs per treatment) with 5 different levels of acid hydrolyzed ether extract (AEE). The dietary treatments consisted of a corn-soybean meal diet with no added fat (L1); a corn-soy diet with 6% each of corn distiller's dried grains with solubles (DDGS), corn germ meal, and wheat middlings (L2); the L2 diet but with 12% each of corn DDGS, corn germ meal, and wheat middlings (L3); the L2 diet plus soybean oil to equalize the NE concentration of the L2 diet with L1 (L4); and the L3 diet plus soybean oil to equalize the NE concentration of the L3 diet with L1 (L5). Pigs received feed and water ad libitum for the growing period (initial BW = 38.5 ± 1.2 kg) and the finishing period (initial BW = 73.82 ± 2.9 kg). A quadratic broken-line model was employed to estimate the response of apparent total tract digestibility (ATTD) of AEE to dietary AEE level. The average true total tract digestibility (TTTD) of AEE and endogenous losses of AEE were estimated using regression analysis of dietary AEE intake (g/kg of DM) against apparent digested AEE (g/kg of DMI). The ATTD of AEE increased in curvilinear fashion as dietary AEE level increased in growing and in finishing pigs (P < 0.001). This suggests an influence of EEE on the ATTD of AEE estimates. The linear regression of apparent digested AEE against dietary AEE intake (L1-L5; P < 0.001, R 2 = 0.99 for growing pigs and P < 0.001, R 2 = 0.99 for finishing pigs) estimated greater EEE (P < 0.05) and TTTD of AEE (P < 0.05) for growing than finishing pigs. Estimated EEE from growing pigs ranged between 18.1 and 20.2 g/kg of DMI, while TTTD of AEE ranged between 96.40% and 100.70%. In finishing pigs, EEE ranged between 21.6 and 23.8 g/kg of DMI and TTTD of AEE ranged between 91.30% and 95.25%. In conclusion, EEE under practical conditions is estimated to be 19.2 g/kg of DMI in growing and 22.7 g/kg of DMI in finishing pigs.

4.
J Anim Sci ; 99(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861853

RESUMEN

Previous research indicated that phytase may release less phosphorus (P) from phytate when it is evaluated using diets with P levels above requirement as compared with diets below requirement. The objectives of this experiment were to further test the hypothesis that the P release values determined for phytase are higher when pigs are fed diets that are deficient (DE) in P compared with when they are fed diets that are adequate (AD) in P, and that phytase will increase the digestibility of dry matter (DM), gross energy (GE), nitrogen (N), and calcium (Ca) independent of dietary P status. Twenty-four barrows (body weight: 23.2 ± 1.8 kg) were randomly assigned to one of eight dietary treatments and housed in individual pens for 21 d and then moved to metabolism crates for 9 d, with the collection of urine and feces occurring on the final 5 d. A basal corn-soybean meal diet (P-AD) was formulated at 0.36% standardized total tract digestible (STTD) P and total calcium:STTD P (Ca:STTD P) of 2:1. A P-DE diet was also formulated to maintain a constant Ca:STTD P of 2:1 in both basal diets. Phytase was added to AD and DE diets at 350, 600, 1,000 phytase units (FYT)/kg. Pig was the experimental unit; diet (P-AD or P-DE), phytase level, and replicate were fixed effects. Orthogonal polynomial contrasts were used to test linear and quadratic effects of phytase within P-AD and P-DE diets. Phytase improved apparent total tract digestibility (ATTD) and STTD of P in both P-AD (linear P < 0.001) and P-DE diets (quadratic P < 0.001). Estimates for STTD P release were 0.07%, 0.09%, and 0.09% for 350, 600, and 1,000 phytase units (FYT)/kg in P-DE diets, and 0.02%, 0.03%, and 0.05% in P-AD diets, respectively. In P-DE diets, phytase improved absorption and retention of P and increased urinary excretion of P (quadratic P < 0.001). In P-AD diets, phytase improved absorption of P (linear P = 0.066), tended to improve retention (linear P = 0.066), and increased urinary excretion of P (quadratic P = 0.021). Phytase improved ATTD of Ca in P-DE diets (quadratic P = 0.002) but not in P-AD diets (P > 0.1). In conclusion, the release of P by phytase is lower in diets that are AD in P than those which are DE. Phytase increased the availability of Ca only in the diets DE in P. Finally, phytase increased the ATTD of DM and tended to increase the ATTD of energy, independent of dietary P status.


Asunto(s)
6-Fitasa , Fósforo Dietético , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Digestión , Tracto Gastrointestinal , Fósforo , Glycine max , Porcinos , Zea mays
5.
J Anim Sci ; 99(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009363

RESUMEN

In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. A total of 3 replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF + 100 mg xylanase/kg (HF + XY [Econase XT 25P; AB Vista, Marlborough, UK]) providing 16,000 birch xylan units/kg; and HF + 50 mg arabinoxylan-oligosaccharide (AXOS) product/kg (HF + AX [XOS 35A; Shandong Longlive Biotechnology, Shandong, China]) providing AXOS with 3-7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P < 0.01). Relative to HF, HF + XY improved the AID of GE, CP, and NDF (P < 0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P < 0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P = 0.031). Relative to HF, HF + XY improved cecal disappearance of DM (162 vs. 98 g; P = 0.008) and NDF (44 vs. 13 g; P < 0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P < 0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF + XY decreased ileal viscosity compared with HF (P < 0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.


Asunto(s)
Digestión , Zea mays , Alimentación Animal/análisis , Animales , China , Dieta/veterinaria , Fibras de la Dieta , Femenino , Tracto Gastrointestinal , Íleon , Porcinos
6.
PLoS One ; 16(1): e0246144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33503052

RESUMEN

The experimental objective was to characterize the impact of insoluble corn-based fiber, xylanase, and an arabinoxylan-oligosaccharide on ileal digesta and mucosa microbiome of pigs. Three replicates of 20 gilts were blocked by initial body weight, individually-housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF), a 30% corn bran high-fiber control (HF), HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan oligosaccharide (HF+AX). Gilts were fed their respective treatments for 46 days. On day 46, pigs were euthanized and ileal digesta and mucosa were collected. The V4 region of the 16S rRNA was amplified and sequenced, generating a total of 2,413,572 and 1,739,013 high-quality sequences from the digesta and mucosa, respectively. Sequences were classified into 1,538 mucosa and 2,495 digesta operational taxonomic units (OTU). Hidden-state predictions of 25 enzymes were made using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUST2). Compared to LF, HF increased Erysipelotrichaceae_UCG-002, and Turicibacter in the digesta, Lachnospiraceae_unclassified in the mucosa, and decreased Actinobacillus in both (Q<0.05). Relative to HF, HF+XY increased 19 and 14 of the 100 most abundant OTUs characterized from digesta and mucosa, respectively (Q<0.05). Notably, HF+XY increased the OTU_23_Faecalibacterium by nearly 6 log2-fold change, compared to HF. Relative to HF, HF+XY increased genera Bifidobacterium, and Lactobacillus, and decreased Streptococcus and Turicibacter in digesta (Q<0.05), and increased Bifidobacterium and decreased Escherichia-Shigella in the mucosa (Q<0.05). Compared to HF, HF+AX increased 5 and 6 of the 100 most abundant OTUs characterized from digesta and mucosa, respectively, (Q<0.05), but HF+AX did not modulate similar taxa as HF+XY. The PICRUST2 predictions revealed HF+XY increased gene-predictions for enzymes associated with arabinoxylan degradation and xylose metabolism in the digesta, and increased enzymes related to short-chain fatty acid production in the mucosa. Collectively, these data suggest xylanase elicits a stimbiotic and prebiotic mechanism.


Asunto(s)
Alimentación Animal , Bacterias , Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Íleon/microbiología , Mucosa Intestinal/microbiología , Porcinos/microbiología , Xilanos/farmacología , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Endo-1,4-beta Xilanasas/genética
7.
Front Microbiol ; 12: 619970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841350

RESUMEN

This research tested the hypothesis that xylanase modulates microbial communities within the large intestine of growing pigs fed corn-based fiber through a stimbiotic mechanism(s) of action (MOA). Sixty gilts were blocked by initial body weight, individually housed, and randomly assigned to one of four dietary treatments (n = 15): a low-fiber (LF) control, a high-fiber (HF) control containing 30% corn bran, HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan-oligosaccharide (HF+AX). Pigs were fed dietary treatments for 46 days. On day 46, pigs were euthanized, and mucosa and lumen contents were collected from the cecum and the colon. The V4 region of 16S rRNA genes was sequenced and clustered into 5,889, 4,657, 2,822, and 4,516 operational taxonomic units (OTUs), in the cecal contents and mucosa and colonic contents and mucosa, respectively. In cecal contents, HF+XY increased measures of α-diversity compared to LF (p < 0.001). Relative to LF, HF increased the prevalence of 44, 36, 26, and 8, and decreased 19, 9, 21, and 10, of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). Compared to LF, HF increased the abundance of OTUs from the Treponema_2, Ruminococcus_1 genera, from the Lachnospiraceae, Ruminococcaceae, and Prevotellaceae families. In contrast, relative to LF, HF decreased Turicibacter and Lactobacillus in the cecal contents, and Megasphaera and Streptococcus in the mucosa. Relative to HF, HF+XY increased 32, 16, 29, and 19 and decreased 27, 11, 15, and 10 of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). The addition of xylanase to HF further increased the abundance of OTUs from the Lachnospiraceae and Ruminococcaceae families across the large intestine. Compared to HF, HF+XY increased the abundance of Lactobacillus, Bifidobacterium, and Faecalibacterium among all locations (Q < 0.05). However, HF+AX did not increase the prevalence of these genera in the large intestine. Supplementing xylanase to HF increased hidden-state predictions of microbial enzymes associated with arabinoxylan degradation, xylose metabolism, and short-chain fatty acid production. These data suggest xylanase elicits a stimbiotic MOA in the large intestine of pigs fed corn-based fiber.

8.
J Anim Sci ; 99(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014285

RESUMEN

In swine production, pig movement restrictions or packing plant closures may create the need to slow growth rates of finishing pigs to ensure they remain at a marketable body weight when packing plant access is restored. Although dietary formulations can be successful at slowing pig growth, precision is needed regarding how to best formulate diets to achieve growth rate reductions. Thus, the objective was to evaluate three dietary experimental approaches aimed at slowing growth rates in finishing pigs. These approaches consisted of either increasing neutral detergent fiber (NDF), reducing essential amino acids, or reducing the dietary electrolyte balance through the addition of acidogenic salts. A total of 94 mixed-sex pigs (72.4 ± 11.2 kg BW) across two replicates were individually penned and assigned to 1 of 8 dietary treatments (n = 11-12 pigs/treatment): 1) Control diet representative of a typical corn-soybean meal-based finisher diet (CON); 2) diet containing 15% NDF from soybean hulls (15% NDF); 3) diet containing 20% NDF from soybean hulls (20% NDF); 4) diet containing 25% NDF from soybean hulls (25% NDF); 5) diet formulated as per CON but with 50% of the soybean meal replaced with corn (89% Corn); 6) diet containing 97% corn and no soybean meal or synthetic amino acids (97% Corn); 7) diet containing 2% anhydrous calcium chloride (2% CaCl2); and 8) diet containing 4% anhydrous calcium chloride (4% CaCl2). Over 28 d, pig body weights and performance were recorded weekly. At d 28, all pigs were ultrasound scanned and switched to the CON diet to evaluate compensatory gain from d 28 to 35. Overall, increased NDF did not impact any growth performance parameter (P > 0.05). Amino acid restriction reduced average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) linearly (linear P < 0.001). Similarly, ADG, ADFI, and G:F were linearly reduced with increased CaCl2 inclusion (linear P < 0.001). ADG differed during the compensatory gain period (P < 0.001), with 4% CaCl2-fed pigs having a 47% increase in ADG compared with CON-fed pigs. Conversely, 15% and 25% NDF-fed pigs had reduced ADG compared with CON-fed pigs during the compensatory gain period. Gain efficiency differed from day 28 to 35 (P < 0.001), with 4% CaCl2-fed pigs having a 36% increase in G:F compared with CON-fed pigs. Altogether, these data demonstrate that both amino acid restriction and CaCl2 inclusion are effective at slowing pig growth, albeit at greater inclusion rates.


Asunto(s)
Aminoácidos , Alimentación Animal , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Fibras de la Dieta , Glycine max , Porcinos , Equilibrio Hidroelectrolítico , Zea mays
9.
J Anim Sci ; 99(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33394016

RESUMEN

Although pork producers typically aim to optimize growth rates, occasionally it is necessary to slow growth, such as when harvest facility capacity is limited. In finishing pigs, numerous dietary strategies can be used to slow growth so pigs are at optimal slaughter body weights when harvest facility capacity and/or access is restored. However, the impact of these diets on pork carcass quality is largely unknown. Thus, this study aimed to evaluate the efficacy of dietary strategies to slow growth in late finishing pigs and evaluate their effects on carcass composition and pork quality. Mixed-sex pigs (n = 897; 125 ± 2 kg BW) were randomly allotted across 48 pens and assigned to 1 of 6 dietary treatments (n = 8 pens/treatment): (1) Control diet representative of a typical finisher diet (CON); (2) diet containing 3% calcium chloride (CaCl2); (3) diet containing 97% corn and no soybean meal (Corn); (4) diet deficient in isoleucine (LowIle); (5) diet containing 15% neutral detergent fiber (NDF) from soybean hulls (15% NDF); and (6) diet containing 20% NDF from soybean hulls (20% NDF). Over 42 d, pen body weights and feed disappearance were collected. Pigs were harvested in 3 groups (14, 28, and 42 d on feed) and carcass data collected. From the harvest group, 1 loin was collected from 120 randomly selected carcasses (20 loins/treatment) to evaluate pork quality traits. Overall, ADG was reduced in CaCl2, Corn, and 20% NDF pigs compared with CON pigs (P < 0.001). However, ADFI was only reduced in CaCl2 and 20% NDF pigs compared with CON (P < 0.001). Feed efficiency was reduced in CaCl2 and Corn pigs compared with CON (P < 0.001). Hot carcass weights were reduced in CaCl2 pigs at all harvest dates (P < 0.001) and were reduced in Corn and 20% NDF pigs at days 28 and 42 compared with CON pigs (P < 0.001). In general, CaCl2 and 20% NDF diets resulted in leaner carcasses, whereas the Corn diet increased backfat by 42 d on test (P < 0.05). Loin pH was reduced and star probe increased in CaCl2 pigs compared with CON pigs (P < 0.05); no treatments differed from CON pigs regarding drip loss, cook loss, color, firmness, or marbling (P ≥ 0.117). Overall, these data indicate that several dietary strategies can slow finishing pig growth without evidence of behavioral vices. However, changes to carcass composition and quality were also observed, indicating quality should be taken into consideration when choosing diets to slow growth.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Carne de Cerdo , Porcinos/crecimiento & desarrollo , Animales , Composición Corporal , Dieta/veterinaria
10.
J Anim Sci ; 99(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015122

RESUMEN

Study objectives were to determine the effects of continuously infusing glucose (GLC) or casein (CAS) into the terminal ileum on biomarkers of metabolism, inflammation, and intestinal morphology in growing pigs. Crossbred gilts (n = 19; 81 ± 3 kg body weight [BW]) previously fitted with T-cannulas at terminal ileum were used in the current experiment. Following 4 d of acclimation, pigs were enrolled in 2 experimental 4-d periods (P). During P1, pigs were housed in individual pens and fed ad libitum for collection of baseline parameters. At the beginning of P2, pigs were assigned to 1 of 3 infusion treatments: 1) control (CON; water; 3 liters/d; n = 7), 2) GLC (dextrose 50%; 500 g/d; n = 6;), or 3) CAS (casein sodium salt; 300 g/d; n = 6). Water, GLC, and CAS solutions were continuously infused at a rate of 125 mL/h for the entirety of P2. Animals were euthanized at the end of P2, and intestinal tissue was collected. During P2, average daily feed intake differed across treatments and was reduced in GLC compared with CON pigs (14%), while CAS pigs consumed an intermediate amount (P = 0.05). Average daily gain and final BW were similar across treatments. A treatment by time interaction was observed for blood urea nitrogen (BUN; P < 0.01), as it decreased in GLC (21%) while it gradually increased in CAS (76%) pigs relative to CON pigs. Mild hyperthermia occurred with both GLC and CAS infusions relative to CON (+0.3 and 0.2 °C, respectively; P < 0.01). Blood neutrophils increased in CAS relative to CON pigs (26%) but remained similar between CON and GLC treatments (P < 0.01). Blood monocytes decreased in GLC relative to CON pigs (24%) while CAS pigs had an intermediate value (P = 0.03). Circulating lipopolysaccharide binding protein tended to decrease in GLC (29%) relative to CON pigs but remained similar between CON and CAS pigs (P = 0.10). Plasma tumor necrosis factor-alpha was similar across treatments. Ileum villus height:crypt depth was increased in CAS compared with CON pigs (33%; P = 0.05) while GLC pigs had an intermediate value. Colon myeloperoxidase-stained area increased in CAS compared with CON pigs (45%; P = 0.03) but remained similar between GLC and CON pigs. In summary, continuously infusing GLC or CAS into the terminal ileum appeared to stimulate a mild immune response and differently altered BUN patterns but had little or no effects on blood inflammatory markers, intestinal morphology, or key production parameters.


Asunto(s)
Glucosa , Enfermedades de los Porcinos , Alimentación Animal/análisis , Animales , Biomarcadores , Caseínas , Dieta , Femenino , Íleon , Inflamación/veterinaria , Porcinos
11.
Transl Anim Sci ; 5(4): txab225, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34993422

RESUMEN

Coronavirus Disease 2019 (COVID-19) was declared a global pandemic on March 11, 2020 by the World Health Organization and its impact on animal agriculture in the United States was undeniable. By April, COVID-19 resulted in the simultaneous closure or reduced operations of many meat processing plants in the upper Midwest, leading to supply chain disruptions. In Iowa, the leading pork production and processing state, these disruptions caused producer uncertainty, confusion, and stress, including time-sensitive challenges for maintaining animal care. The Iowa Resource Coordination Center (IRCC) was quickly created and launched by the Iowa Department of Agriculture and Land Stewardship (IDALS). The IRCC included public representation from the Iowa Pork Producers Association (IPPA), Iowa Pork Industry Center (IPIC), and Iowa State University Extension and Outreach, and private partners including producers, veterinarians, and technical specialists. Supporting swine welfare, the IRCC provided information on management strategies, dietary alterations to slow pig growth, alternative markets, on-farm euthanasia, and mass depopulation under veterinary oversight. In a crisis, Iowa created a model that reacted to producers' pragmatic, mental and emotional needs. This model could be quickly replicated with an introduction of foreign animal disease.

12.
J Anim Sci ; 98(11)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970148

RESUMEN

Corn is a common energy source in pig diets globally; when financially warranted, industrial corn coproducts, such as corn distiller's dried grains with solubles (DDGS), are also employed. The energy provided by corn stems largely from starch, with some contribution from protein, fat, and non-starch polysaccharides (NSP). When corn DDGS are used in the diet, it will reduce starch within the diet; increase dietary protein, fat, and NSP levels; and alter the source profile of dietary energy. Arabinoxylans (AXs) comprise the majority of NSP in corn and its coproducts. One strategy to mitigate the antinutritive effects of NSP and improve its contribution to energy is by including carbohydrases within the diet. Xylanase is a carbohydrase that targets the ß-1,4-glycosidic bonds of AX, releasing a mixture of smaller polysaccharides, oligosaccharides, and pentoses that could potentially be used by the pig. Xylanase is consistently effective in poultry production and moderately consistent in wheat-based swine diets, but its efficacy in corn-based swine diets is quite variable. Xylanase has been shown to improve the digestibility of various components of swine-based diets, but this seldom translates into an improvement in growth performance. Indeed, a review of xylanase literature conducted herein suggests that xylanase improves the digestibility of dietary fiber at least 50% of the time in pigs fed corn-based diets, but only 33% and 26% of the time was there an increase in average daily gain or feed efficiency, respectively. Intriguingly, there has been an abundance of reports proposing xylanase alters intestinal barrier integrity, inflammatory responses, oxidative status, and other health markers in the pig. Notably, xylanase has shown to reduce mortality in both high and low health commercial herds. These inconsistencies in performance metrics, and unexpected health benefits, warrant a greater understanding of the in vivo mechanism(s) of action (MOA) of xylanase. While the MOA of xylanase has been postulated considerably in the literature and widely studied in in vitro settings, in wheat-based diets, and in poultry, there is a dearth of understanding of the in vivo MOA in pigs fed corn-based diets. The purpose of this review is to explore the role of xylanase in corn-based swine diets, discuss responses observed when supplemented in diets containing corn-based fiber, suggest potential MOA of xylanase, and identify critical research gaps.


Asunto(s)
Fibras de la Dieta/análisis , Suplementos Dietéticos/análisis , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Ingestión de Energía , Glicósido Hidrolasas/metabolismo , Intestinos/fisiología , Masculino , Triticum , Xilanos/metabolismo , Zea mays
13.
Transl Anim Sci ; 4(2): txaa045, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32705042

RESUMEN

The objective of this study was to determine the effects of lactose (LA) and a prototype Lactobacillus acidophilus fermentation product (FP) on growth performance, diet digestibility, nitrogen (N) balance, and intestinal function of weaned pigs. Twenty-eight newly weaned pigs [approximately 21 d of age; initial body weight (BW) = 5.20 ± 0.15 kg] were housed in metabolism crates and assigned to one of four treatments (n = seven pigs per treatment) corresponding to a 2 × 2 factorial design: with (LA+; 15% inclusion) or without (LA-) LA and with (FP+) or without (FP-) the prototype FP (1 g of FP per kilogram of diet; Diamond V, Cedar Rapids, IA). Feed and water were provided ad libitum. At day 5, pigs were orally given lactulose and mannitol to assess small intestinal permeability. Fecal samples were collected on days 5-9 to determine the apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and N. Total urine output and fecal samples were collected on days 10-13 to determine N retention. On day 15, all pigs were euthanized to collect intestinal lumen and tissue samples. Data were analyzed for the main effects of LA and FP and their interaction using the MIXED procedure of SAS. Lactose improved average daily feed intake (ADFI; P = 0.017), the ATTD of DM (P = 0.014), the ATTD of GE (P = 0.028), and N retention (P = 0.043) and tended to increase the butyric acid concentration in the colon (P = 0.062). The FP tended to increase the digestibility of N (P = 0.090). Neither LA nor the FP affected intestinal barrier function or inflammation markers. The interaction between LA and FP affected intestinal morphology: in the jejunum, pigs fed LA+FP- had increased villus height compared with those fed LA+FP+ and LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.034). At the terminal ileum, pigs fed LA-FP+ and LA+FP- had increased villus height and villus: crypt compared with those fed LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.007 and P = 0.007, respectively). In conclusion, the addition of LA brings important nutritional attributes to nursery diets by improving feed intake, digestibility of DM and GE, and the N retention of weaned pigs; however, the functional capacity of LA to improve markers of intestinal function is limited. On the other hand, the FP showed only a mild increase in the digestibility of N but a limited capacity to improve markers of intestinal function.

14.
J Anim Sci ; 98(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315034

RESUMEN

The objective of this study was to determine the differences in response to distillers dried grains with solubles (DDGS) level under constant nutrient or floating nutrient concentrations. A total of 21 ileal-cannulated gilts (33.1 ± 0.4 kg body weight) were randomly allotted to one of seven dietary treatments in a 3-period incomplete Latin square design (n = 9). Treatments consisted of a 0% DDGS basal diet, plus diets containing 15%, 30%, or 45% DDGS. Diets were formulated using one of two different formulation methods: 1) constant nutrient (CNU) where nutrients were held equal to the basal diet or 2) constant ingredients (CIN) where DDGS were added at the expense of corn and all other ingredients remained constant, so nutrient levels were allowed to "float." Chromic oxide was added to the diets at 0.5% as an indigestible marker. Increasing the level of DDGS decreased the apparent ileal digestibility (AID) of dry matter (DM), gross energy (GE), starch, dispensable amino acids (AA), and fiber components (P < 0.050). The decrease in the AID of Lys, Met, Thr, and Trp was more pronounced under CNU compared with the CIN formulation method (P < 0.050). The decrease in the AID of hemicellulose was less pronounced under CNU compared with the CIN formulation method (P = 0.045). There was a DDGS level × formulation method interaction for the AID of acid hydrolyzed ether extract (AEE; P = 0.015); for the CNU formulation method, increasing level of DDGS decreased the AID of AEE from 0% to 30% and remained similar from 30% to 45% DDGS, whereas the CIN had no effect on the AID of AEE. Increasing the level of DDGS decreased the apparent total tract digestibility (ATTD) of DM, GE, and fiber components (P < 0.050), except for acid detergent fiber, which was not affected. The decrease in the ATTD of insoluble dietary fiber and total dietary fiber was less pronounced under CNU compared with CIN (P < 0.050). The ATTD of AEE decreased for CNU compared with CIN (P < 0.010). In conclusion, increasing the insoluble fiber level in the form of DDGS decreased the digestibility of most dietary components, including DM, GE, starch, insoluble fiber, and AA. The CNU and CIN formulation methods are equivalent when evaluating the digestibilities of DM, GE, starch, crude protein, and AA (when they were not added in purified synthetic forms). Differences between CNU and CIN formulation methods were detected for the digestibility of insoluble fiber, fat, and essential AA (when added as crystalline AA).


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Digestión/efectos de los fármacos , Porcinos/fisiología , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Fibras de la Dieta/metabolismo , Digestión/fisiología , Femenino , Tracto Gastrointestinal/metabolismo
15.
Transl Anim Sci ; 4(3): txaa095, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32844150

RESUMEN

The objective of this experiment was to compare the effects of spray-dried plasma protein (SDPP) and dried egg protein (DEP), without (AB-) or with (AB+) in-feed antibiotics, on growth performance and markers of intestinal health in nursery pigs raised in commercial conditions. This 42-d experiment utilized 1,230 pigs (4.93 ± 0.04 kg body weight; approximately 15-18 d of age). Pigs were randomly assigned to one of six dietary treatments that were arranged as a 2 × 3 factorial of in-feed antibiotics (AB- vs. AB+) and a specialty protein additive (none [CON], porcine SDPP, or DEP). Diets were fed in four phases with phases 3 and 4 as a common diet across all treatments. Specialty protein additives were fed in phases 1 (0-13 d; 3% SDPP, and 0.20% DEP) and 2 (13-26 d; 2% SDPP, and 0.10% DEP). Antibiotics were fed in phases 1-3 (662 mg chlortetracycline [CTC]/kg, 28 mg carbadox/kg, and 441 mg CTC/kg, respectively). Ileal tissue and blood samples were collected from 48 pigs (8 per treatment) on d 20. Data were analyzed using PROC MIXED of SAS (9.4) with pen as the experimental unit; protein additives, antibiotics, and their interaction were fixed effects and block was a random effect. The pigs experienced naturally occurring health challenges in weeks 2 and 4. In the AB- diets, SDPP and DEP increased average daily gain (ADG; P = 0.036) and average daily feed intake (ADFI; P = 0.040) compared to CON; in the AB+ diets, neither SDPP nor DEP increased ADG or ADFI compared to CON but SDPP did increase these parameters over DEP. The SDPP and DEP diets decreased the number of individual medical treatments compared to CON (P = 0.001). The AB+ increased ileal mucosal interleukin (IL)-1 receptor antagonist (P = 0.017). Feeding DEP reduced the concentration of mucosal IL-1ß compared to CON, but not SDPP (P = 0.022). There was a trend for SDPP and DEP to increase villus height:crypt depth compared to CON (P = 0.066). Neither antibiotics or protein additive affected serum malondialdehyde concentration or ileal mRNA abundance of claudin-3 or 4, occludin, or zonula occludens-1 (P > 0.10). In conclusion, SDPP and DEP improved growth performance of weaned pigs in the absence of antibiotics but neither improved growth compared to CON when feeding standard antibiotic levels. The specialty proteins had a positive effect on health; specialty proteins and antibiotics were able to modulate some markers of intestinal inflammation and morphology.

16.
J Anim Sci ; 98(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32687554

RESUMEN

The experimental objective was to investigate the impact of xylanase on the bioavailability of energy, oxidative status, and gut function of growing pigs fed a diet high in insoluble fiber and given a longer adaptation time than typically reported. Three replicates of 20 gilts with an initial body weight (BW) of 25.43 ± 0.88 kg were blocked by BW, individually housed, and randomly assigned to one of four dietary treatments: a low-fiber control (LF) with 7.5% neutral detergent fiber (NDF), a 30% corn bran without solubles high-fiber control (HF; 21.9% NDF), HF + 100 mg/kg xylanase (HF + XY; Econase XT 25P), and HF + 50 mg/kg arabinoxylan-oligosaccharide (HF + AX). Gilts were fed ad libitum for 36 d across two dietary phases. Pigs and feeders were weighed on days 0, 14, 27, and 36. On day 36, pigs were housed in metabolism crates for a 10-d period, limit fed (80% of average ad libitum intake), and feces and urine were collected the last 72 h to determine the digestible energy (DE) and metabolizable energy (ME). On day 46, serum and ileal and colonic tissue were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment, time, and treatment × time as fixed effects. There was a significant treatment × time interaction for BW, average daily gain (ADG), and gain to feed (G:F; P < 0.001). By design, BW at day 0 did not differ; at day 14, pigs fed LF were 3.5% heavier, and pigs fed HF + XY, when compared with HF, were 4% and 4.2% heavier at days 27 and 36, respectively (P < 0.001). From day 14 to 27 and day 27 to 36, when compared with HF, HF + XY improved ADG by 12.4% and 10.7% and G:F by 13.8% and 8.8%, respectively (P < 0.05). Compared with LF, HF decreased DE and ME by 0.51 and 0.42 Mcal/kg, respectively, but xylanase partially mitigated that effect by increasing DE and ME by 0.15 and 0.12 Mcal/kg, over HF, respectively (P < 0.05). Pigs fed HF + XY had increased total antioxidant capacity in the serum and ileum (P < 0.05) and tended to have less circulating malondialdehyde (P = 0.098). Pigs fed LF had increased ileal villus height, and HF + XY and HF + AX had shallower intestinal crypts (P < 0.001). Pigs fed HF + XY had increased ileal messenger ribonucleic acid abundance of claudin 4 and occludin (P < 0.05). Xylanase, but not AX, improved the growth performance of pigs fed insoluble corn-based fiber. This was likely a result of the observed increase in ME, improved antioxidant capacity, and enhanced gut barrier integrity, but it may require increased adaptation time to elicit this response.


Asunto(s)
Alimentación Animal/análisis , Fibras de la Dieta/farmacología , Digestión/efectos de los fármacos , Endo-1,4-beta Xilanasas/farmacología , Porcinos/fisiología , Zea mays/química , Animales , Peso Corporal , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión/fisiología , Endo-1,4-beta Xilanasas/administración & dosificación , Metabolismo Energético/fisiología , Heces , Femenino , Microbioma Gastrointestinal , Íleon/metabolismo , Masculino , Estrés Oxidativo , Porcinos/crecimiento & desarrollo , Porcinos/metabolismo
17.
J Anim Sci ; 98(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011771

RESUMEN

The objective of this experiment was to evaluate the growth performance and bone mineral content (BMC) of nursery pigs in response to increasing total calcium (Ca) to available phosphorus (aP) ratios in diets containing phytase (250 FTU/kg; Natuphos E, BASF, Florham Park, NJ). A total of 480 nursery pigs (body weight (BW) = 5.7 ± 0.6 kg) with 10 pigs per pen and 7 pens per treatment (6 pens fed 2.75:1 diet) were allotted to seven treatments consisting of increasing ratios of calcium to available phosphorus (Ca:aP): 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 2.75. From day -7 to 0, pigs were fed a common diet. They were then fed the treatment diets during two experimental phases from day 1 to 14 and 15 to 28, respectively. Available P was formulated to 0.33% and 0.27% (approximately 90% of requirement) in dietary phases 1 and 2, respectively. BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. BMC of the femur was measured on day 28 on one pig per pen using dual x-ray absorptiometry. Data were analyzed as a linear mixed model using PROC MIXED (SAS, 9.3). Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing the Ca:aP. Over the 28-d experimental period, increasing Ca:aP resulted in a linear decrease in ADG (353, 338, 328, 304, 317, 291, and 280 g/d; P < 0.01), ADFI (539, 528, 528, 500, 533, 512, and 489 g/d; P < 0.05), and G:F (0.68, 0.66, 0.64, 0.62, 0.61, 0.59, and 0.58; P < 0.01). Increasing Ca:aP also resulted in decreased BW on days 14 and 28 (P < 0.01). The BMC of the femur decreased with increasing Ca:aP (6.2, 6.3, 5.7, 5.9, 5.5, 5.6, and 5.3 g; P < 0.05). Regression analysis explained the impact of Ca:aP as follows on ADG (ADG [g/d] = 339 - 36x; r2 = 0.81), G:F (G:F = 0.61 - 0.03x; r2 = 0.72), and BMC (BMC [g] = 6.4 - 0.27x; r2 = 0.43), where x is the Ca:aP. In conclusion, all outcomes indicated that any level of calcium above the minimum used in this experiment impaired growth performance and skeletal development. Further research using even lower levels of dietary Ca is warranted.


Asunto(s)
Fósforo Dietético , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Desarrollo Óseo , Calcio , Dieta/veterinaria , Tracto Gastrointestinal , Minerales , Fósforo , Porcinos
18.
Transl Anim Sci ; 4(1): 10-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32704962

RESUMEN

The experimental objective was to determine the role of mean particle size (PS), grinding method, and body weight (BW) category on nutrient, fiber, and energy digestibility of corn. A total of 48 barrows were housed in individual pens and randomly assigned to one of six dietary treatments for 11 d at two BW categories (55 kg and 110 kg). The six treatments consisted of corn ground at three different targeted mean PSs (300, 500, and 700 µm) using either a roller mill or a hammermill. Fecal samples were collected for the last 3 d of each feeding period. Titanium dioxide was used as an indigestible marker. Digestibility data were analyzed as a linear mixed model using the MIXED procedure of SAS. Finishing pigs had greater apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and N than growing pigs (P = 0.02, P = 0.01, and P <0.01, respectively). The ATTD of DM, GE, and N was similar in pigs fed hammermilled corn across all PS treatments. However, in roller-milled corn, they increased as PS was reduced (P < 0.05). The ATTD of acid-hydrolyzed ether extract (AEE) in growing pigs was similar between corn ground at 700 and 500 µm, but it was increased by further reducing PS to 300 µm (P < 0.05). In finishing pigs, the ATTD of AEE increased as mean PS decreased from 700 to 300 µm (P < 0.05). The ATTD of AEE was similar in hammermilled corn at all three PS treatments. On the other hand, the ATTD of AEE was similar in corn ground in a roller mill to 700 and 500 µm, but it increased when PS was reduced to 300 µm (P < 0.05). In conclusion, reducing PS of corn with a roller mill increased digestibility of energy and nutrients, but there was less effect using a hammermill. It is possible that differences in SD, distribution, chemical composition, and the shape of the particles resulting from the two grinding processes help to explain the different response.

19.
Transl Anim Sci ; 4(2): txaa062, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32705057

RESUMEN

Feed grains are processed to improve their value in pig diets by exposing kernel contents to enzymatic and microbial action. The objective of this study was to quantify the effect of reducing mean particle size (PS) of wheat grain ground with two different grinding methods (GMs) on the apparent total tract digestibility (ATTD) of nutrients and energy in growing and finishing pigs. Forty-eight barrows were housed in individual pens for 11 d for two periods. Pigs were randomly assigned to a 3 × 2 × 2 factorial experimental design: three target mean PS of wheat grain (300, 500, and 700 µm), two GMs (roller mill and hammermill), and two body weight (BW) periods (growing period; initial BW of 54.9 ± 0.6 kg and finishing period; initial BW of 110.7 ± 1.4 kg). Diets contained one of six hard red wheat grain samples, vitamins, minerals, and titanium dioxide as an indigestible marker. Feed allowance provided 2.5 (for the two lightest pigs in each treatment) or 2.7 (for the remaining six pigs in each treatment) times the estimated daily maintenance energy requirement for each growth stage. Fecal samples were collected for the last 3 d of each period. Data were analyzed as a linear mixed model with pig as a random effect and PS, GM, and BW period and their interactions as fixed effects utilizing the MIXED procedure of SAS. Growing pigs had greater (P < 0.05) ATTD of dry matter (DM), gross energy (GE), N, acid hydrolyzed ether extract (AEE), and neutral detergent fiber (NDF) by lowering mean PS from 700 to 500 µm using either a roller mill or a hammermill. However, digestibility did not increase when PS was reduced from 500 to 300 µm, except for AEE (P < 0.05). Finishing pigs had greater ATTD of DM, GE, N, AEE, and NDF by lowering mean PS with a hammermill from 700 to 500 µm (P < 0.05), but it was greater for 500 µm than for 300 µm (P < 0.05). Using a roller mill reduced the ATTD of DM and NDF by lowering PS from 700 to 300 µm (P < 0.05). The ATTD of GE decreased by lowering PS from 700 to 500 µm with a roller mill (P < 0.05) for finishing pigs. The ATTD of N and AEE for finishing pigs were similar from 700 to 300 µm when ground by a roller mill. These data suggest that the PS that maximized digestibility for a hammermill is 500 µm for both growing and finishing pigs. However, for the roller mill, the PS resulting in the best digestibility were 500 and 700 µm for growing and finishing pigs, respectively.

20.
Transl Anim Sci ; 4(3): txaa171, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33381711

RESUMEN

The objective of this study was to determine the impact of reducing the mean particle size (PS) of corn distillers dried grains with solubles (DDGS) with a hammermill (HM) or with a roller mill (RM) on the apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), N, acid hydrolyzed ether extract (AEE), and fiber components in growing and finishing pigs. Twenty-four growing barrows were housed in individual pens and were randomly assigned to a 3 × 2 factorial design (n = 8): three grinding methods [either corn DDGS ground with an HM to a PS of 450 µm; corn DDGS ground with an RM to a PS of 450 µm; and corn DDGS with a PS of 670 µm (not further ground)] and two body weight (BW) periods (growing pigs with an average initial BW of 54.7 ± 0.9 kg, and finishing pigs with an average initial BW of 107.8 ± 1.5 kg BW). Fecal samples were collected for each BW period in the last 3 d of an 11-d feeding period. Titanium dioxide was used as an indigestible marker. Digestibility data were analyzed using the MIXED procedure of SAS. Results showed that finishing pigs tended to have better ATTD of DM than growing pigs (P = 0.09) and had increased ATTD of GE and N than growing pigs (P = 0.03 and P < 0.01, respectively). On the other hand, growing pigs had better ATTD of AEE than finishing pigs (P = 0.01). Pig BW period did not affect the ATTD of neutral detergent fiber (NDF), acid detergent fiber (ADF), and hemicellulose. Reducing the mean PS of corn DDGS with either HM or RM (from 670 to 450 µm) improved the ATTD of DM and GE (P < 0.01 and P < 0.01), tended to improve the ATTD of N (P = 0.08), and improved the ATTD of AEE (P < 0.01). No effect of reducing PS was observed for the ATTD of NDF, ADF, or hemicellulose. There were no differences between HM and RM in any of the ATTD variables tested. In conclusion, reducing PS of corn DDGS from 670 to 450 µm either with an HM or with an RM improved the digestibility of DM, GE, and AEE and modestly improved the digestibility of N in growing and finishing pigs. However, reducing the PS of corn DDGS did not affect the digestibility of fiber components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA