Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mutat ; 40(9): 1280-1291, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31106481

RESUMEN

The integrative analysis of high-throughput reporter assays, machine learning, and profiles of epigenomic chromatin state in a broad array of cells and tissues has the potential to significantly improve our understanding of noncoding regulatory element function and its contribution to human disease. Here, we report results from the CAGI 5 regulation saturation challenge where participants were asked to predict the impact of nucleotide substitution at every base pair within five disease-associated human enhancers and nine disease-associated promoters. A library of mutations covering all bases was generated by saturation mutagenesis and altered activity was assessed in a massively parallel reporter assay (MPRA) in relevant cell lines. Reporter expression was measured relative to plasmid DNA to determine the impact of variants. The challenge was to predict the functional effects of variants on reporter expression. Comparative analysis of the full range of submitted prediction results identifies the most successful models of transcription factor binding sites, machine learning algorithms, and ways to choose among or incorporate diverse datatypes and cell-types for training computational models. These results have the potential to improve the design of future studies on more diverse sets of regulatory elements and aid the interpretation of disease-associated genetic variation.


Asunto(s)
ADN/química , Epigenómica/métodos , Mutación Puntual , Sitios de Unión , Línea Celular , Cromatina/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Humanos , Aprendizaje Automático , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
2.
J Stat Phys ; 187(2): 17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400756

RESUMEN

Landauer's Principle states that the energy cost of information processing must exceed the product of the temperature, Boltzmann's constant, and the change in Shannon entropy of the information-bearing degrees of freedom. However, this lower bound is achievable only for quasistatic, near-equilibrium computations-that is, only over infinite time. In practice, information processing takes place in finite time, resulting in dissipation and potentially unreliable logical outcomes. For overdamped Langevin dynamics, we show that counterdiabatic potentials can be crafted to guide systems rapidly and accurately along desired computational paths, providing shortcuts that allow for the precise design of finite-time computations. Such shortcuts require additional work, beyond Landauer's bound, that is irretrievably dissipated into the environment. We show that this dissipated work is proportional to the computation rate as well as the square of the information-storing system's length scale. As a paradigmatic example, we design shortcuts to create, erase, and transfer a bit of information metastably stored in a double-well potential. Though dissipated work generally increases with operation fidelity, we show that it is possible to compute with perfect fidelity in finite time with finite work. We also show that the robustness of information storage affects an operation's energetic cost-specifically, the dissipated work scales as the information lifetime of the bistable system. Our analysis exposes a rich and nuanced relationship between work, speed, size of the information-bearing degrees of freedom, storage robustness, and the difference between initial and final informational statistics.

3.
J Phys Chem B ; 121(15): 3403-3411, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27700088

RESUMEN

Adiabatic quantum state evolution can be accelerated through a variety of shortcuts to adiabaticity. In one approach, a counterdiabatic quantum Hamiltonian, HCD, is constructed to suppress nonadiabatic excitations. In the analogous classical problem, a counterdiabatic classical Hamiltonian, HCD, ensures that the classical action remains constant even under rapid driving. Both the quantum and classical versions of this problem have been solved for the special case of scale-invariant driving, characterized by linear expansions, contractions, or translations of the system. Here we investigate an example of a non-scale-invariant system, a tilted piston. We solve exactly for the classical counterdiabatic Hamiltonian, HCD(q, p, t), which we then quantize to obtain a Hermitian operator, HCD(t). Using numerical simulations, we find that HCD effectively suppresses nonadiabatic excitations under rapid driving. These results offer a proof of principle, beyond the special case of scale-invariant driving, that quantum shortcuts to adiabaticity can successfully be constructed from their classical counterparts.

4.
Phys Rev E ; 95(3-1): 032122, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415339

RESUMEN

We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H=p^{2}/2m+U(q,t) in one degree of freedom, and for an arbitrary choice of action I_{0}, we construct a so-called fast-forward potential energy function V_{FF}(q,t) that, when added to H, guides all trajectories with initial action I_{0} to end with the same value of action. We use this result to construct a local dynamical invariant J(q,p,t) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA