Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 68(15): 4309-4322, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28922767

RESUMEN

Over the last decades, most information on the mechanisms underlying tolerance to drought has been gained by considering this stress as a single event that happens just once in the life of a plant, in contrast to what occurs under natural conditions where recurrent drought episodes are the rule. Here we explored mechanisms of drought tolerance in coffee (Coffea canephora) plants from a broader perspective, integrating key aspects of plant physiology and biochemistry. We show that plants exposed to multiple drought events displayed higher photosynthetic rates, which were largely accounted for by biochemical rather than diffusive or hydraulic factors, than those submitted to drought for the first time. Indeed, these plants displayed higher activities of RuBisCO and other enzymes associated with carbon and antioxidant metabolism. Acclimation to multiple drought events involved the expression of trainable genes related to drought tolerance and was also associated with a deep metabolite reprogramming with concordant alterations in central metabolic processes such as respiration and photorespiration. Our results demonstrate that plants exposed to multiple drought cycles can develop a differential acclimation that potentiates their defence mechanisms, allowing them to be kept in an 'alert state' to successfully cope with further drought events.


Asunto(s)
Aclimatación , Coffea/fisiología , Sequías , Fotosíntesis , Brasil , Coffea/genética
2.
Ann Bot ; 114(7): 1507-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25002525

RESUMEN

BACKGROUND AND AIMS: The REM (Reproductive Meristem) gene family of Arabidopsis thaliana is part of the B3 DNA-binding domain superfamily. Despite the fact that several groups have worked on the REM genes for many years, little is known about the function of this transcription factor family. This study aims to identify a set of REM genes involved in flower development and to characterize their function. METHODS: In order to provide an overview of the REM gene family, a detailed expression analysis for all REM genes of A. thaliana was performed and combined with a meta-analysis of ChIP-sequencing and microarray experiments. KEY RESULTS: Two sets of phylogenetically closely related REM genes, namely REM23, REM24 and REM25, and REM34, REM35 and REM36, were identified as possibly being involved in the early stages of flower development. Single- and double-mutant combinations were analysed for these genes, and no phenotypic effects were detected during flower development. CONCLUSIONS: The data suggest that the REM34, REM35 and REM36 group is the most interesting one, as REM34 is co-expressed with the floral meristem identity (FMI) genes, they are bound by AP1, SVP, AP3 and PI, and they are expressed in the floral meristem and during the earliest stages of flower development. However, it appears that high levels of functional redundancy may conceal the exact function of these transcription factor genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromosomas de las Plantas/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Análisis por Micromatrices , Mutación , Filogenia , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA