Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 29(24): 3900-3918, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33378537

RESUMEN

C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.


Asunto(s)
Empalme Alternativo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Demencia Frontotemporal/patología , Penetrancia , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación , Fenotipo
2.
J Biol Chem ; 293(42): 16127-16141, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30213863

RESUMEN

Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.


Asunto(s)
Expansión de las Repeticiones de ADN , Repeticiones de Microsatélite , Enfermedades del Sistema Nervioso/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72 , Dipéptidos , Demencia Frontotemporal/genética , Expresión Génica , Enfermedad de Huntington/genética , Mutación , Distrofia Miotónica/genética
3.
J Cell Sci ; 129(9): 1892-901, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026526

RESUMEN

The capacity of the cell to produce, fold and degrade proteins relies on components of the proteostasis network. Multiple types of insults can impose a burden on this network, causing protein misfolding. Using thermal stress, a classic example of acute proteostatic stress, we demonstrate that ∼5-10% of the soluble cytosolic and nuclear proteome in human HEK293 cells is vulnerable to misfolding when proteostatic function is overwhelmed. Inhibiting new protein synthesis for 30 min prior to heat-shock dramatically reduced the amount of heat-stress induced polyubiquitylation, and reduced the misfolding of proteins identified as vulnerable to thermal stress. Following prior studies in C. elegans in which mutant huntingtin (Q103) expression was shown to cause the secondary misfolding of cytosolic proteins, we also demonstrate that mutant huntingtin causes similar 'secondary' misfolding in human cells. Similar to thermal stress, inhibiting new protein synthesis reduced the impact of mutant huntingtin on proteostatic function. These findings suggest that newly made proteins are vulnerable to misfolding when proteostasis is disrupted by insults such as thermal stress and mutant protein aggregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Huntingtina/metabolismo , Mutación Missense , Biosíntesis de Proteínas , Deficiencias en la Proteostasis/metabolismo , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Proteína Huntingtina/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
4.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33022226

RESUMEN

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Ratones , Ratones Transgénicos , Fenotipo
5.
Neuron ; 105(4): 645-662.e11, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31831332

RESUMEN

The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Anticuerpos Monoclonales/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Terapia Genética/métodos , Proteína de Unión al GTP ran/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/metabolismo , Marcación de Gen/métodos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Distribución Aleatoria , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Unión al GTP ran/antagonistas & inhibidores
6.
Trends Neurosci ; 41(5): 247-250, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29703376

RESUMEN

In 2011, an intronic (G4C2)•(G2C4) expansion was shown to cause the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This discovery linked ALS with a clinically distinct form of dementia and a larger group of microsatellite repeat diseases, and catalyzed basic and translational research.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Animales , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-29891563

RESUMEN

More than 40 different neurological diseases are caused by microsatellite repeat expansions that locate within translated or untranslated gene regions, including 5' and 3' untranslated regions (UTRs), introns, and protein-coding regions. Expansion mutations are transcribed bidirectionally and have been shown to give rise to proteins, which are synthesized from three reading frames in the absence of an AUG initiation codon through a novel process called repeat-associated non-ATG (RAN) translation. RAN proteins, which were first described in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), have now been reported in a growing list of microsatellite expansion diseases. This article reviews what is currently known about RAN proteins in microsatellite expansion diseases and experiments that provide clues on how RAN translation is regulated.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Biosíntesis de Proteínas/genética , Predisposición Genética a la Enfermedad , Humanos , Repeticiones de Microsatélite
8.
Neuron ; 90(3): 521-34, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27112499

RESUMEN

To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now report a BAC mouse model of C9orf72 ALS/FTD that shows decreased survival, paralysis, muscle denervation, motor neuron loss, anxiety-like behavior, and cortical and hippocampal neurodegeneration. These mice express C9orf72 sense transcripts and upregulated antisense transcripts. In contrast to sense RNA foci, antisense foci preferentially accumulate in ALS/FTD-vulnerable cell populations. RAN protein accumulation increases with age and disease, and TDP-43 inclusions are found in degenerating brain regions in end-stage animals. The ALS/FTD phenotypes in our mice provide a unique tool that will facilitate developing therapies targeting pathways that prevent neurodegeneration and increase survival.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Encéfalo/metabolismo , Demencia Frontotemporal/genética , Factores de Intercambio de Guanina Nucleótido/genética , Neuronas Motoras/fisiología , Animales , Proteína C9orf72 , Expansión de las Repeticiones de ADN/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA