RESUMEN
Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.
Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Metformina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perros , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Osteosarcoma/patologíaRESUMEN
Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.
Asunto(s)
Enfermedades de los Perros/metabolismo , Células Madre Neoplásicas/fisiología , Osteosarcoma/veterinaria , Animales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Perros , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/citologíaRESUMEN
BACKGROUND: Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. METHODS: Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. RESULTS: We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. CONCLUSIONS: Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias Mamarias Animales , Metformina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/farmacocinética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Perros , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Antígeno Ki-67/metabolismo , Metformina/farmacocinética , Ratones , Fenotipo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Adiponectin (Acrp30) is an adipocyte-secreted hormone with pleiotropic metabolic effects, whose reduced levels were related to development and progression of several malignancies. We looked at the presence of Acrp30 receptors in human glioblastomas (GBM), hypothesizing a role for Acrp30 also in this untreatable cancer. Here we demonstrate that human GBM express Acrp30 receptors (AdipoR1 and AdipoR2), which are often co-expressed in GBM samples (70% of the analyzed tumors). To investigate the effects of Acrp30 on GBM growth, we used human GBM cell lines U87-MG and U251, expressing both AdipoR1 and AdipoR2 receptors. In these cells, Acrp30 treatment inhibits DNA synthesis and cell proliferation rate, inducing arrest in G1 phase of the cell cycle. These effects were correlated to a sustained activation of ERK1/2 and Akt kinases, upon Acrp30 treatment. Our results suggest that Acrp30 may represent a novel endogenous negative regulator of GBM cell proliferation, to be evaluated for the possible development of novel pharmacological approaches.
Asunto(s)
Adiponectina/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Glioblastoma/patología , Transducción de Señal/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Adiponectina/metabolismo , Factores de TiempoRESUMEN
Hepatocyte growth factor, produced by stromal and follicular dendritic cells, and present at high concentrations in the sera of patients with chronic lymphocytic leukemia, prolongs the survival of leukemic B cells by interacting with their receptor, c-MET. It is, however, unknown whether hepatocyte growth factor influences microenvironmental cells, such as nurse-like cells, which deliver survival signals to the leukemic clone. We evaluated the expression of c-MET on nurse-like cells and monocytes from patients with chronic lymphocytic leukemia and searched for phenotypic/functional features supposed to be influenced by the hepatocyte growth factor/c-MET interaction. c-MET is expressed at high levels on nurse-like cells and at significantly higher levels than normal on monocytes from patients. Moreover, the hepatocyte growth factor/c-MET interaction activates STAT3(TYR705) phosphorylation in nurse-like cells. Indoleamine 2,3-dioxygenase, an enzyme modulating T-cell proliferation and induced on normal monocytes after hepatocyte growth factor treatment, was detected together with interleukin-10 on nurse-like cells, and on freshly-prepared patients' monocytes. Immunohistochemical/immunostaining analyses demonstrated the presence of c-MET(+) and indoleamine 2,3-dioxygenase(+) cells in lymph node biopsies, co-expressed with CD68 and vimentin. Furthermore nurse-like cells and chronic lymphocytic monocytes significantly inhibited T-cell proliferation, prevented by anti-transforming growth factor beta and interleukin-10 antibodies and indoleamine 2,3-dioxygenase inhibitors, and supported CD4(+)CD25(high+)/FOXP3(+) T regulatory cell expansion. We suggest that nurse-like cells display features of immunosuppressive type 2 macrophages: higher hepatocyte growth factor levels, produced by leukemic or other microenvironmental surrounding cells, may cooperate to induce M2 polarization. Hepatocyte growth factor may thus have a dual pathophysiological role: directly through enhancement of survival of the leukemic clone and indirectly by favoring T-cell immunosuppression.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Células Cultivadas , Técnicas de Cocultivo , Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Factor de Transcripción STAT3/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Metformin, a first-line drug for type-2 diabetes, displays pleiotropic effects on inflammation, aging, and cancer. Obesity triggers a low-grade chronic inflammation leading to insulin resistance, characterized by increased pro-inflammatory cytokines produced by adipocytes and infiltrated immune cells, which contributes to metabolic syndrome. We investigated metformin's differentiation and immunoregulatory properties of human umbilical cord-mesenchymal stem cells (UC-MSC), as cellular basis of its beneficial role in metabolic dysfunctions. Isolation, characterization and multilineage differentiation of UC-MSC were performed using standard protocols and flow-cytometry. Metformin effects on UC-MSC growth was assessed by colony formation and MTT assay, gene and protein expression by qRT-PCR, and western blot analysis. Proliferation of peripheral blood mononuclear cells (PBMCs) co-cultured with metformin-treated UC-MSC-conditioned media was evaluated by dye dilution assay. We show that metformin decreases proliferation and colony formation of UC-MSCs and enhances their adipogenic lineage commitment. Metformin (3 mM) increases PPARγ and downregulates FABP4 mRNA both in basal and in adipogenic culture conditions; however, the modulation of PPARγ expression is unrelated to the antiproliferative effects. Moreover, metformin inhibits UC-MSC inflammatory activity reducing the expression of IL-6, MCP-1, and COX-2. Conditioned media, collected from metformin-treated UC-MSCs, down-regulate CD3+ T lymphocyte growth in stimulated PBMCs and, in particular, reduce the CD8+ T cell population. These results indicate that metformin may favor new adipocyte formation and potentiate immune suppressive properties of UC-MSCs. Thus, adipose tissue regeneration and anti-inflammatory activity may represent possible mechanisms by which metformin exerts its positive effect on lipid metabolism.
Asunto(s)
Células Madre Mesenquimatosas , Metformina , Humanos , Medios de Cultivo Condicionados/metabolismo , Inmunosupresores/farmacología , Leucocitos Mononucleares , Metformina/farmacología , PPAR gamma/metabolismo , Diferenciación Celular/fisiología , Cordón Umbilical , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células CultivadasRESUMEN
BACKGROUND: Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings. METHODS: We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos). RESULTS: We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity. CONCLUSIONS: These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.
Asunto(s)
Biguanidas/uso terapéutico , Canales de Cloruro/metabolismo , Glioblastoma/genética , Glioma/genética , Células Madre Neoplásicas/metabolismo , Biguanidas/farmacología , Línea Celular Tumoral , Glioblastoma/patología , Glioma/patología , HumanosRESUMEN
BACKGROUND: Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. DESIGN AND METHODS: Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. RESULTS: Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. CONCLUSIONS: The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone.
Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Factor de Transcripción STAT3/metabolismo , Apoptosis/genética , Línea Celular , Supervivencia Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Células Madre Mesenquimatosas/citología , Fosforilación , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , Receptores CXCR4/genéticaRESUMEN
Thyrotropin-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism and account for less than 2% of pituitary adenomas. Medical therapy with somatostatin analogues (SSAs) effectively reduces TSH secretion in approximately 80% of patients and induces shrinkage in about 45% of tumors. According with previous data, resistance to SSA treatment might be due to heterogeneity in somatostatin receptors (SSTRs) expression. We report the case of TSHoma in a 41-year-old man treated with octreotide LAR that caused a dramatic decrease of TSH and thyroid hormones and tumor shrinkage already after 3 months of pre-surgical therapy. In search of potential molecular determinants of octreotide effectiveness, we measured, in primary cultures from this tumor, SSTR and dopamine D2 receptor (D2R) expression, and octreotide and/or cabergoline effects on TSH secretion and cell proliferation. SSTR5 and D2R expression was higher than SSTR2. Octreotide significantly inhibited TSH secretion more effectively than cabergoline (P<0.001), whereas the combined treatment was comparable with cabergoline alone. Similarly, octreotide resulted more effective than cabergoline on cell proliferation, while the combination did not show any additive or synergistic effects. In conclusion, the significant antisecretive and antiproliferative effect of octreotide in this patient might be related to the high expression of SSTR5, in the presence of SSTR2. After reviewing the literature, indeed, in line with previous observations, we hypothesize that SSTR5/SSTR2 ratio in TSHomas may represent a useful marker in predicting the outcome of therapy with SSAs. The role of D2R should be further explored considering that the presence of D2R can influence SSTRs functionality.
Asunto(s)
Adenoma/tratamiento farmacológico , Octreótido/farmacología , Neoplasias Hipofisarias/tratamiento farmacológico , Receptores de Somatostatina/genética , Adenoma/genética , Adenoma/metabolismo , Adulto , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/farmacología , Células Cultivadas , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Octreótido/administración & dosificación , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/fisiología , Tirotrofos/metabolismo , Tirotrofos/patología , Tirotropina/metabolismoRESUMEN
Somatostatin receptors (SSTR1-5) mediate antiproliferative effects. In C6 rat glioma cells, somatostatin is cytostatic in vitro via phosphotyrosine phosphatase-dependent inhibition of ERK1/2 activity mediated by SSTR1, -2, and -5. Here we analyzed the effects of SSTR activation on C6 glioma growth in vivo and the intracellular mechanisms involved, comparing somatostatin effects with selective agonists for SSTR1, -2, and -5 (BIM-23745, BIM-23120, BIM-23206) or receptor biselective compounds (SSTR1 and -2, BIM-23704; and SSTR2 and -5, BIM-23190). Nude mice subcutaneously xenografted with C6 cells were treated with somatostatin, SSTR agonists (50 µg, twice/day), or vehicle. Tumor growth was evaluated every 3 days for 19 days. The intracellular pathways responsible of SSTR effects in vivo were evaluated measuring Ki-67, phospho-ERK1/2, and p27(kip1) expression by immunohistochemistry in sections from explanted tumors. Somatostatin and SSTR1, -2, and -5 agonists strongly inhibited in vivo C6 tumor growth, intratumoral neovessel formation, Ki-67 expression, and ERK1/2 phosphorylation and induced upregulation of p27(Kip1), whereas only a modest activation of caspase-3 was observed. Somatostatin (acting on SSTR1, -2, and -5) displayed the highest efficacy; SSTR5 selective agonist showed a stronger effect than SSTR1 agonist, and SSTR2 agonist was less effective. On the other hand, SSTR1 and -2 agonists maximally reduced tumor neovascularization. The combined activation of SSTR1 and -2 showed a synergistic activity, reaching a higher efficacy than BIM-23206, whereas the simultaneous activation of SSTR2 and -5 resulted in a response resembling SSTR5 effects. Thus the simultaneous activation of different SSTRs inhibits glioma cell proliferation in vivo through both direct cytotostatic and antiangiogenic effects.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Receptores de Somatostatina/agonistas , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Glioma/irrigación sanguínea , Glioma/patología , Inmunohistoquímica , Ratones , Ratones Desnudos , Microcirculación/efectos de los fármacos , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Oligopéptidos/farmacología , Piperazinas/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Somatostatina/análogos & derivados , Somatostatina/farmacologíaRESUMEN
PURPOSE: Hypothalamic or locally produced growth factors and cytokines control pituitary development, functioning, and cell division. We evaluated the expression of the chemokine stromal cell-derived factor 1 (SDF1) and its receptor CXCR4 in human pituitary adenomas and normal pituitary tissues and their role in cell proliferation. EXPERIMENTAL DESIGN: The expression of SDF1 and CXCR4 in 65 human pituitary adenomas and 4 human normal pituitaries was determined by reverse transcription-PCR, immunohistochemistry, and confocal immunofluorescence. The proliferative effect of SDF1 was evaluated in eight fibroblast-free human pituitary adenoma cell cultures. RESULTS: CXCR4 mRNA was expressed in 92% of growth hormone (GH)-secreting pituitary adenomas (GHoma) and 81% of nonfunctioning pituitary adenomas (NFPA), whereas SDF1 was identified in 63% and 78% of GHomas and NFPAs, respectively. Immunostaining for CXCR4 and SDF1 showed a strong homogenous labeling in all tumoral cells in both GHomas and NFPAs. In normal tissues, CXCR4 and SDF1 were expressed only in a subset of anterior pituitary cells, with a lower expression of SDF1 compared with its cognate receptor. CXCR4 and SDF1 were not confined to a specific cell population in the anterior pituitary but colocalized with discrete subpopulations of GH-, prolactin-, and adrenocorticorticotropic hormone-secreting cells. Conversely, most of the SDF1-containing cells expressed CXCR4. In six of eight pituitary adenoma primary cultures, SDF1 induced a statistically significant increase in DNA synthesis that was prevented by the treatment with the CXCR4 antagonist AMD3100 or somatostatin. CONCLUSIONS: CXCR4 and SDF1 are overexpressed in human pituitary adenomas and CXCR4 activation may contribute to pituitary cell proliferation and, possibly, to adenoma development in humans.
Asunto(s)
Quimiocina CXCL12/biosíntesis , Neoplasias Hipofisarias/metabolismo , Receptores CXCR4/biosíntesis , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia ArribaRESUMEN
The coordinated activity of estrogens and epidermal growth factor receptor (EGFR) family agonists represents the main determinant of breast cancer cell proliferation. Stromal cell-derived factor-1 (SDF-1) enhances extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity via the transactivation of EGFR and 17beta-estradiol (E2) induces SDF-1 production to exert autocrine proliferative effects. On this basis, we evaluated whether the inhibition of the tyrosine kinase (TK) activity of EGFR may control different mitogenic stimuli in breast tumors using the EGFR-TK inhibitor gefitinib to antagonize the proliferation induced by E2 in T47D human breast cancer cells. EGF, E2, and SDF-1 induced a dose-dependent T47D cell proliferation, that being nonadditive suggested the activation of common intracellular pathways. Gefitinib treatment inhibited not only the EGF-dependent proliferation and ERK1/2 activation but also the effects of SDF-1 and E2, suggesting that these activities were mediated by EGFR transactivation. Indeed, both SDF-1 and E2 caused EGFR tyrosine phosphorylation. The molecular link between E2 and SDF-1 proliferative effects was identified because 1,1'-(1,4-phenylenebis(methylene))-bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist, inhibited SDF-1- and E2-dependent proliferation and EGFR and ERK1/2 phosphorylation. EGFR transactivation was dependent on c-Src activation. E2 treatment caused a powerful SDF-1 release from T47D cells. Finally, in SKBR3, E2-resistant cells, EGFR was constitutively activated, and AMD3100 reduced EGFR phosphorylation and cell proliferation, whereas HER2-neu was transactivated by SDF-1 in SKBR3 but not in T47D cells. In conclusion, we show that activation of CXCR4 transduces proliferative signals from the E2 receptor to EGFR, whose inhibition is able to revert breast cancer cell proliferation induced by multiple receptor activation.
Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Quimiocina CXCL12/fisiología , Receptores ErbB/genética , Estradiol/farmacología , Quinazolinas/farmacología , Activación Transcripcional/efectos de los fármacos , Línea Celular Tumoral , Gefitinib , HumanosRESUMEN
Somatostatin inhibits cell proliferation through the activation of five receptors (SSTR1-5) expressed in normal and cancer cells. We analyzed the role of individual SSTRs in the antiproliferative activity of somatostatin in C6 rat glioma cells. Somatostatin dose-dependently inhibited C6 proliferation, an effect mimicked, with different efficacy or potency, by BIM-23745, BIM-23120, BIM-23206 (agonists for SSTR1, -2, and -5) and octreotide. The activation of SSTR3 was ineffective, although all SSTRs are functionally active, as demonstrated by the inhibition of cAMP production. All SSTRs induced cytostatic effects through the activation of the phosphotyrosine phosphatase PTPeta and the inhibition of ERK1/2. For possible synergism between SSTR subtypes, we tested the effects of the combined treatment with two agonists (SSTR1+2 or SSTR2+5) or bifunctional compounds. The simultaneous activation of SSTR1 and SSTR2 slightly increased the efficacy of the individual compounds with an IC50 in between the single receptor activation. SSTR2+5 activation displayed a pattern of response superimposable to that of the SSTR5 agonist alone (low potency and higher efficacy, as compared with BIM-23120). The simultaneous activation of SSTR1, -2, and -5 resulted in a response similar to somatostatin. In conclusion, the cytostatic effects of somatostatin in C6 cells are mediated by the SSTR1, -2, and -5 through the same intracellular pathway: activation of PTPeta and inhibition of ERK1/2 activity. Somatostatin is more effective than the individual agonists. The combined activation of SSTR1 and -2 shows a partial synergism as far as antiproliferative activity, whereas SSTR2 and -5 activation results in a response resembling the SSTR5 effects.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Glioma/patología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/fisiología , Receptores de Somatostatina/fisiología , Somatostatina/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ratas , Receptores de Somatostatina/agonistas , Células Tumorales CultivadasRESUMEN
The receptor-like phosphotyrosine phosphatase eta (PTPeta) is an important intracellular effector of the cytostatic action of SST. Here we characterize, in Chinese hamster ovary-k1 cells, the intracellular pathway that from somatostatin receptor 1 (SSTR1), leads to the activation of PTPeta and that involves, in a multimeric complex and sequential activation, the tyrosine kinases Janus kinase (JAK) 2 and Src, and the cytosolic phosphotyrosine phosphatase SHP-2. We show that inhibitors of JAK2 and Src and dominant-negative mutants of SHP-2 and Src abolished the SSTR1-mediated PTPeta activation, suggesting that all these effectors participate in the activation of PTPeta. In basal conditions, JAK2 forms a multimeric complex with SHP-2, Src and PTPeta. In response to SST, JAK2 is activated in a G protein-dependent manner, dissociates from and phosphorylates SHP-2, increasing its activity. Subsequently, SHP-2 dissociates from Src, dephosphorylates the Src inhibitory tyrosine-529, and causes an autocatalytical increase of the phosphorylation of Src tyrosine 418, located inside its kinase activation loop. Active Src, in turn, controls the activity of PTPeta, via a direct interaction and phosphorylation of the phosphatase. These data for the first time depict an intracellular pathway involving a precise sequence of interactions and cross-activation among tyrosine phosphatases and kinases acting upstream of PTPeta. In particular the sequential activation of JAK2, SHP-2, and Src conveys the molecular signaling from SSTR1 to the activation of this phosphatase that is responsible for the final biological effects of SST.
Asunto(s)
Proteínas Tirosina Fosfatasas/química , Receptores de Somatostatina/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Citosol/enzimología , Activación Enzimática , Genes Dominantes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Janus Quinasa 2/metabolismo , Toxina del Pertussis/farmacología , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Transducción de Señal , Familia-src Quinasas/metabolismoRESUMEN
Pituitary adenomas are among the more frequent intracranial tumors usually treated with both surgical and pharmacological-based on somatostatin and dopamine agonists-approaches. Although mostly benign tumors, the occurrence of invasive behaviors is often detected resulting in poorer prognosis. The use of primary cultures from human pituitary adenomas represented a significant advancement in the knowledge of the mechanisms of their development and in the definition of the determinants of their pharmacological sensitivity. Moreover, recent studies identified also in pituitary adenomas putative tumor stem cells representing, according to the current hypothesis, the real cellular targets to eradicate most malignancies. In this protocol, we describe the procedure to establish primary cultures from human pituitary adenomas, and how to select, in vitro expand, and phenotypically characterize putative pituitary adenoma stem cells.
RESUMEN
Metformin is an antidiabetic drug which possesses antiproliferative activity in cancer cells when administered at high doses, due to its unfavorable pharmacokinetics. The aim of this work was to develop a pharmacological tool for the release of metformin in proximity of the tumor, allowing high local concentrations, and to demonstrate the in vivo antitumor efficacy after a prolonged metformin exposition. A 1.2% w/w metformin thermoresponsive parenteral formulation based on poloxamers P407 and P124, injectable at room temperature and undergoing a sol-gel transition at body temperature, has been developed and optimized for rheological, thermal and release control properties; the formulation is easily scalable, and proved to be stable during a 1-month storage at 5 °C. Using NOD/SCID mice pseudo-orthotopically grafted with MDA-MB-231/luc+ human breast cancer cells, we report that multiple administrations of 100 mg of the optimized metformin formulation close to the tumor site cause tissue accumulation of the drug at levels significantly higher than those observed in plasma, and enough to exert antiproliferative and pro-apoptotic activities. Our results demonstrate that this formulation is endowed with good stability, tolerability, thermal and rheological properties, representing a novel tool to be pursued in further investigations for adjuvant cancer treatment.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Geles/química , Hipoglucemiantes/farmacología , Metformina/farmacología , Animales , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Preparaciones de Acción Retardada , Femenino , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Infusiones Parenterales , Metformina/administración & dosificación , Metformina/farmacocinética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability. In vitro, CLIC1 inhibition leads to a significant arrest of GB CSCs in G1 phase of the cell cycle. Furthermore, CLIC1 knockdown impairs tumor growth in vivo Here, we demonstrate that CLIC1 membrane localization and function is specific for GB CSCs. Mesenchymal stem cells (MSC) do not show CLIC1-associated chloride permeability, and inhibition of CLIC1 protein function has no influence on MSC cell-cycle progression. Investigation of the basic functions of GB CSCs reveals a constitutive state of oxidative stress and cytoplasmic alkalinization compared with MSCs. Both intracellular oxidation and cytoplasmic pH changes have been reported to affect CLIC1 membrane functional expression. We now report that in CSCs these three elements are temporally linked during CSC G1-S transition. Impeding CLIC1-mediated chloride current prevents both intracellular ROS accumulation and pH changes. CLIC1 membrane functional impairment results in GB CSCs resetting from an allostatic tumorigenic condition to a homeostatic steady state. In contrast, inhibiting NADPH oxidase and NHE1 proton pump results in cell death of both GB CSCs and MSCs. Our results show that CLIC1 membrane protein is crucial and specific for GB CSC proliferation, and is a promising pharmacologic target for successful brain tumor therapies. Mol Cancer Ther; 17(11); 2451-61. ©2018 AACR.
Asunto(s)
Neoplasias Encefálicas/patología , Canales de Cloruro/metabolismo , Fase G1 , Glioblastoma/patología , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo , Fase S , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Células Madre Neoplásicas/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Factores de TiempoRESUMEN
The antidiabetic biguanide metformin exerts antiproliferative effects in different solid tumors. However, during preclinical studies, metformin concentrations required to induce cell growth arrest were invariably within the mM range, thus difficult to translate in a clinical setting. Consequently, the search for more potent metformin derivatives is a current goal for new drug development. Although several cell-specific intracellular mechanisms contribute to the anti-tumor activity of metformin, the inhibition of the chloride intracellular channel 1 activity (CLIC1) at G1/S transition is a key events in metformin antiproliferative effect in glioblastoma stem cells (GSCs). Here we tested several known biguanide-related drugs for the ability to affect glioblastoma (but not normal) stem cell viability, and in particular: phenformin, a withdrawn antidiabetic drug; moroxydine, a former antiviral agent; and proguanil, an antimalarial compound, all of them possessing a linear biguanide structure as metformin; moreover, we evaluated cycloguanil, the active form of proguanil, characterized by a cyclized biguanide moiety. All these drugs caused a significant impairment of GSC proliferation, invasiveness, and self-renewal reaching IC50 values significantly lower than metformin, (range 0.054-0.53 mM vs. 9.4 mM of metformin). All biguanides inhibited CLIC1-mediated ion current, showing the same potency observed in the antiproliferative effects, with the exception of proguanil which was ineffective. These effects were specific for GSCs, since no (or little) cytotoxicity was observed in normal umbilical cord mesenchymal stem cells, whose viability was not affected by metformin and moroxydine, while cycloguanil and phenformin induced toxicity only at much higher concentrations than required to reduce GSC proliferation or invasiveness. Conversely, proguanil was highly cytotoxic also for normal mesenchymal stem cells. In conclusion, the inhibition of CLIC1 activity represents a biguanide class-effect to impair GSC viability, invasiveness, and self-renewal, although dissimilarities among different drugs were observed as far as potency, efficacy and selectivity as CLIC1 inhibitors. Being CLIC1 constitutively active in GSCs, this feature is relevant to grant the molecules with high specificity toward GSCs while sparing normal cells. These results could represent the basis for the development of novel biguanide-structured molecules, characterized by high antitumor efficacy and safe toxicological profile.
RESUMEN
Chemokines participate in cellular processes associated with tumor proliferation, migration, and angiogenesis. We previously demonstrated that stromal cell-derived factor 1 (SDF1) exerts a mitogenic activity in glioblastomas through the activation of its receptor CXCR4. Here we studied the expression of this chemokine in human meningiomas and its possible role in cell proliferation. Reverse transcriptase-PCR analysis for CXCR4 and SDF1 was performed on 55 human meningiomas (47 WHO grade I, 5 WHO II, and 3 WHO III). Immunolabeling for CXCR4 and SDF1 was performed on paraffin-embedded sections of these tumors. [(3)H]Thymidine uptake and Western blot analyses were performed on primary meningeal cell cultures of tumors to evaluate the proliferative activity of human SDF1alpha (hSDF1alpha) in vitro and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) activation in this process. CXCR4 mRNA was expressed by 78% of the tumor specimens and SDF1 mRNA by 53%. CXCR4 and SDF1 were often detected in the same tumor tissues and colocalized with epithelial membrane antigen immunostaining. In 9 of 12 primary cultures from meningiomas, hSDF1alpha induced significant cell proliferation that was strongly reduced by the mitogen-activated protein kinase kinase inhibitor PD98059, involving ERK1/2 activation in the proliferative signal of hSDF1alpha. In fact, CXCR4 stimulation led to ERK1/2 phosphorylation/activation. In addition, the hSDF1alpha-induced cell proliferation was significantly correlated with the MIB1 staining index in the corresponding surgical specimen. In conclusion, we found that human meningiomas express CXCR4 and SDF1 and that hSDF1alpha induces proliferation in primary meningioma cell cultures through the activation of ERK1/2.
Asunto(s)
Proliferación Celular , Quimiocinas CXC/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Receptores CXCR4/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Quimiocina CXCL12 , Quimiocinas CXC/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Técnicas In Vitro , Masculino , Neoplasias Meníngeas/genética , Meningioma/genética , Meningioma/patología , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptores CXCR4/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células del Estroma/metabolismo , Células Tumorales CultivadasRESUMEN
BACKGROUND: Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge. METHODS: TIC-enriched cultures were obtained from 10 human malignant pleural mesotheliomas and cultured in vitro. Three fully characterized tumorigenic cultures, named MM1, MM3, and MM4, were selected and used to assess antiproliferative effects of the multi-kinase inhibitor sorafenib. Cell viability was investigated by MTT assay, and cell cycle analysis as well as induction of apoptosis were determined by flow cytometry. Western blotting was performed to reveal the modulation of protein expression and the phosphorylation status of pathways associated with sorafenib treatment. RESULTS: We analyzed the molecular mechanisms of the antiproliferative effects of sorafenib in mesothelioma TIC cultures. Sorafenib inhibited cell cycle progression in all cultures, but only in MM3 and MM4 cells was this effect associated with Mcl-1-dependent apoptosis. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt, and STAT3 phosphorylation. These effects were abolished by sorafenib only in bFGF-treated cells, while a modest inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGF receptor (FGFR) inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. Moreover, in MM1 cells, which release high levels of bFGF and showed autocrine activation of FGFR1 and constitutive phosphorylation/activation of MEK-ERK1/2, sorafenib induced a more effective antiproliferative response, confirming that the main target of the drug is the inhibition of FGFR1 activity. CONCLUSIONS: These results suggest that, in malignant pleural mesothelioma TICs, bFGF signaling is the main target of the antiproliferative response of sorafenib, acting directly on the FGFR1 activation. Patients with constitutive FGFR1 activation via an autocrine loop may be more sensitive to sorafenib treatment and the analysis of this possibility warrants further clinical investigation.