Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Toxicol Appl Pharmacol ; 412: 115371, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345901

RESUMEN

D-glucosamine is a widely consumed dietary supplement used to promote joint health and treat osteoarthritis. It also stimulates intracellular hexosamine flux and increases transforming growth factor ß1 (TGFß1) mRNA expression and insulin resistance in animal studies. The effects of D-glucosamine exposure were investigated in obese Zucker rats. Male (leprfa/leprfa) Zucker rats were exposed to 30, 120, 300 and 600 mg D-glucosamine HCl per kg/day either alone or with chondroitin sulfate (24, 96, 240 and 480 mg/kg/day respectively) for 90 days. After 4 weeks exposure, these doses produced CmaxD-glucosamine concentrations of up to 24 µM in tail vein serum concurrent with a transient 30% increase in blood glucose concentration in the 600 mg/kg/day dose group. D-Glucosamine did not significantly alter body weight, blood glucose or serum insulin levels at any dose tested after 13 weeks exposure, but did increase urinary TGFß1 concentrations. The Zucker rats developed nephropathy and scrotal sores that were related to their hyperglycemia and obesity, and D-glucosamine exposure exacerbated these conditions to a small extent. The incidence of pulmonary osseous metaplasia was increased in rats exposed to D-glucosamine and a single incidence of adrenal osseous metaplasia was noted in one animal exposed to 600/480 mg D-glucosamine HCl/chondroitin sulfate. These lesions may have been treatment related. These studies suggest that the risk of adverse effects of oral D-glucosamine is small compared to that of hyperglycemia in these animals, but the potential for TGFß1-mediated pathologies, such as osseous metaplasia and renal nephropathy may be increased.


Asunto(s)
Sulfatos de Condroitina/toxicidad , Diabetes Mellitus Tipo 2/complicaciones , Glucosamina/toxicidad , Obesidad/complicaciones , Animales , Biomarcadores/sangre , Biomarcadores/orina , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaplasia , Obesidad/sangre , Obesidad/patología , Ratas Zucker , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Pruebas de Toxicidad Subcrónica , Factor de Crecimiento Transformador beta1/orina
2.
Birth Defects Res B Dev Reprod Toxicol ; 104(1): 35-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25707689

RESUMEN

BACKGROUND: 2-Hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV) absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS: To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1000, 3000, 10,000, 25,000, or 50,000 ppm HMB (seven to eight per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION: Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats.


Asunto(s)
Benzofenonas/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Lactancia/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Reproducción/efectos de los fármacos , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Recuento de Células , Femenino , Masculino , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Ratas Sprague-Dawley , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/patología , Espermatocitos/efectos de los fármacos , Espermatocitos/patología , Testosterona/sangre
3.
Proc Natl Acad Sci U S A ; 108(39): 16301-6, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930929

RESUMEN

Juvenile male rhesus monkeys treated with methylphenidate hydrochloride (MPH) to evaluate genetic and behavioral toxicity were observed after 14 mo of treatment to have delayed pubertal progression with impaired testicular descent and reduced testicular volume. Further evaluation of animals dosed orally twice a day with (i) 0.5 mL/kg of vehicle (n = 10), (ii) 0.15 mg/kg of MPH increased to 2.5 mg/kg (low dose, n = 10), or (iii) 1.5 mg/kg of MPH increased to 12.5 mg/kg (high dose, n = 10) for a total of 40 mo revealed that testicular volume was significantly reduced (P < 0.05) at months 15 to 19 and month 27. Testicular descent was significantly delayed (P < 0.05) in the high-dose group. Significantly lower serum testosterone levels were detected in both the low- (P = 0.0017) and high-dose (P = 0.0011) animals through month 33 of treatment. Although serum inhibin B levels were increased overall in low-dose animals (P = 0.0328), differences between groups disappeared by the end of the study. Our findings indicate that MPH administration, beginning before puberty, and which produced clinically relevant blood levels of the drug, impaired pubertal testicular development until ∼5 y of age. It was not possible to resolve whether MPH delayed the initiation of the onset of puberty or reduced the early tempo of the developmental process. Regardless, deficits in testicular volume and hormone secretion disappeared over the 40-mo observation period, suggesting that the impact of MPH on puberty is not permanent.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Metilfenidato/farmacología , Maduración Sexual/efectos de los fármacos , Animales , Macaca mulatta , Masculino , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testosterona/sangre
4.
Toxicol Lett ; 359: 22-30, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092809

RESUMEN

Polyethylene glycol (PEG) is present in a variety of products. Little is known regarding the accumulation of high-molecular-weight PEGs or the long-term effects resulting from PEG accumulation in certain tissues, especially the choroid plexus. We evaluated the toxicity of high-molecular-weight PEGs administered to Sprague Dawley rats. Groups of 12 rats per sex were administered subcutaneous injections of 20, 40, or 60 kDa PEG or intravenous injections of 60 kDa PEG at 100 mg PEG/kg body weight/injection once a week for 24 weeks. A significant decrease in triglycerides occurred in the 60 kDa PEG groups. PEG treatment led to a molecular-weight-related increase in PEG in plasma and a low level of PEG in cerebrospinal fluid. PEG was excreted in urine and feces, with a molecular-weight-related decrease in the urinary excretion. A higher prevalence of anti-PEG IgM was observed in PEG groups; anti-PEG IgG was not detected. PEG treatment produced a molecular-weight-related increase in vacuolation in the spleen, lymph nodes, lungs, and ovaries/testes, without an inflammatory response. Mast cell infiltration at the application site was noted in all PEG-treated groups. These data indicate that subcutaneous and intravenous exposure to high-molecular-weight PEGs produces anti-PEG IgM antibody responses and tissue vacuolation without inflammation.


Asunto(s)
Anticuerpos/sangre , Formación de Anticuerpos/efectos de los fármacos , Plexo Coroideo/efectos de los fármacos , Polietilenglicoles/toxicidad , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Peso Molecular , Ratas , Ratas Sprague-Dawley
5.
Food Chem Toxicol ; 160: 112780, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34965465

RESUMEN

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. Repeated dose inhalation toxicity data on NNK, particularly relevant to cigarette smoking, however, is surprisingly limited. Hence, there is a lack of direct information available on the carcinogenic and potential non-carcinogenic effects of NNK via inhalational route exposure. In the present study, the subchronic inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 23 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.2, 0.8, 3.2, or 7.8 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.0066, 0.026, 0.11, or 0.26 mg/L air) for 1 h/day for 90 consecutive days. Toxicity was evaluated by assessing body weights; food consumption; clinical pathology; histopathology; organ weights; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); tissue levels of the DNA adduct O6-methylguanine; blood and bone marrow micronucleus (MN) frequency; and bone marrow DNA strand breaks (comet assay). The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic lesions in the nose. Although the genotoxic biomarker O6-methylguanine was detected, genotoxicity from NNK exposure was negative in the MN and comet assays. The Lowest-Observed-Adverse-Effect-Level (LOAEL) was 0.8 mg/kg BW/day or 0.026 mg/L air of NNK for 1 h/day for both sexes. The No-Observed-Adverse-Effect-Level (NOAEL) was 0.2 mg/kg BW/day or 0.0066 mg/L air of NNK for 1 h/day for both sexes. The results of this study provide new information relevant to assessing the human exposure hazard of NNK.


Asunto(s)
Exposición por Inhalación/efectos adversos , Nicotiana/toxicidad , Nitrosaminas/toxicidad , Animales , Fumar Cigarrillos/efectos adversos , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Pruebas de Micronúcleos , Nivel sin Efectos Adversos Observados , Nariz/efectos de los fármacos , Nariz/patología , Ratas , Ratas Sprague-Dawley , Humo/efectos adversos , Nicotiana/química
6.
Toxicol Sci ; 183(2): 319-337, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34329464

RESUMEN

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. However, repeated inhalation toxicity data on NNK, which is more directly relevant to cigarette smoking, are currently limited. In the present study, the subacute inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 16 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.8, 3.2, 12.5, or 50 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.03, 0.11, 0.41, or 1.65 mg/L air) for 1 h/day for 14 consecutive days. Toxicity was evaluated by assessing body and organ weights; food consumption; clinical pathology; histopathology observations; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); O6-methylguanine DNA adduct formation; and blood and bone marrow micronucleus frequency. Whether the subacute inhalation toxicity of NNK followed Haber's Rule was also determined using additional animals exposed 4 h/day. The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic histopathological lesions in the nose. The lowest-observed-adverse-effect level (LOAEL) was 0.8 mg/kg BW/day or 0.03 mg/L air for 1 h/day for both sexes. An assessment of Haber's Rule indicated that 14-day inhalation exposure to the same dose at a lower concentration of NNK aerosol for a longer time (4 h daily) resulted in greater adverse effects than exposure to a higher concentration of NNK aerosol for a shorter time (1 h daily).


Asunto(s)
Nitrosaminas , Animales , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , Femenino , Pulmón , Masculino , Nitrosaminas/toxicidad , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
7.
Food Chem Toxicol ; 94: 39-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27234134

RESUMEN

Diet is an important variable in toxicology. There are mixed reports on the impact of soy components on energy utilization, fat deposition, and reproductive parameters. Three generations of CD-1 mice were fed irradiated natural ingredient diets with varying levels of soy (NIH-41, 5K96, or 5008/5001), purified irradiated AIN-93 diet, or the AIN-93 formulation modified with ethanol-washed soy protein concentrate (SPC) or SPC with isoflavones (SPC-IF). NIH-41 was the control for pairwise comparisons. Minimal differences were observed among natural ingredient diet groups. F0 males fed AIN-93, SPC, and SPC-IF diets had elevated glucose levels and lower insulin levels compared with the NIH-41 group. In both sexes of the F1 and F2 generations, the SPC and SPC-IF groups had lower body weight gains than the NIH-41 controls and the AIN-93 group had an increased percent body fat at postnatal day 21. AIN-93 F1 pups had higher baseline glucose than NIH-41 controls, but diet did not significantly affect breeding performance or responses to glucose or uterotrophic challenges. Reduced testes weight and sperm in the AIN-93 group may be related to low thiamine levels. Our observations underline the importance of careful selection, manufacturing procedures, and nutritional characterization of diets used in toxicological studies.


Asunto(s)
Dieta , Isoflavonas/análisis , Proteínas de Soja/análisis , Pruebas de Toxicidad , Animales , Femenino , Masculino , Ratones
8.
Mutat Res ; 578(1-2): 1-14, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16107271

RESUMEN

Many patients undergoing chronic therapy with the purine analogue Azathioprine (Aza) have highly elevated HPRT lymphocyte mutant frequencies (MFs), and it is likely that these increases are due to selection of pre-existing HPRT mutant lymphocytes. A similar selection in germ cells might result in an increased frequency of the Lesch-Nyhan syndrome. In this study, a mouse model for Aza mutant selection was developed and Aza toxicity was evaluated in the germ cells of treated mice. Groups of 20 male C57BL/6 mice were treated by gavage three times/week with 0, 5, 10, 25, 50, or 100mg/kg Aza, and three to eight mice from each group were sacrificed at various times for up to 23 weeks. Mice treated with 25-100mg/kg Aza were all dead by 14 weeks of treatment. Hprt lymphocyte MF assays indicated that the treated mice had reduced numbers of spleen lymphocytes. Most treated mice had Hprt MFs similar to those of control mice (2.1+/-1.6 x 10(-6)), however, highly elevated MFs were detected in one out of three mice given 5mg/kg for 10 weeks, one out of three mice given 10mg/kg for 10 weeks, and one out of eight mice given 10mg/kg for 23 weeks (e.g., 233 x 10(-6) after 10 weeks of 5mg/kg). Sequence analysis of Hprt cDNA indicated that all mutant clones from one of these mice had a T-->A transversion in the initiation codon. Multiplex-PCR on mutant clones from the other two mice indicated that all the clones from one had a deletion of Hprt exons 2 and 3, while most of the mutants from the other had lost all of the Hprt exons. Measurements of testicular weight, and of sperm count, viability, morphology, and motility found that Aza produced low levels of toxicity in sperm, with the most consistent effect being a reduction in the testicular weight. The data suggest that mice chronically treated with 5 and 10mg/kg Aza (doses similar to those used in humans) have elevated Hprt MFs due to clonal amplification of selected Hprt mutants. The results also suggest that mice treated with these doses of Aza retain reasonable fertility, and will be useful for breeding experiments to examine the possibility of increasing the germ-line transmission of Hprt mutations.


Asunto(s)
Azatioprina/toxicidad , Hipoxantina Fosforribosiltransferasa/genética , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Mutación , Espermatozoides/efectos de los fármacos , Animales , Azatioprina/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Exones , Linfocitos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Mutágenos/química , Tamaño de los Órganos/efectos de los fármacos , Eliminación de Secuencia , Bazo/citología , Pruebas de Toxicidad Crónica
9.
Toxicol Sci ; 139(1): 174-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24496637

RESUMEN

Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 µg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 µg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Exposición Materna , Fenoles/toxicidad , Animales , Compuestos de Bencidrilo/administración & dosificación , Peso Corporal , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos , Fenoles/administración & dosificación , Embarazo , Ratas , Ratas Sprague-Dawley
10.
Neurotoxicology ; 37: 40-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608161

RESUMEN

Determinants of amphetamine (AMPH)-induced neurotoxicity are poorly understood. The role of lipopolysaccharides (LPS) and organ injury in AMPH-induced neurotoxicity was examined in adult male Sprague-Dawley rats that were give AMPH and became hyperthermic during the exposure. Environmentally-induced hyperthermia (EIH) in the rat was compared to AMPH to determine whether AMPH-induced increases in LPS and peripheral toxicities were solely attributable to hyperthermia. Muscle, liver, and kidney function were determined biochemically at 3h or 1 day after AMPH or EIH exposure and histopathology at 1 day after treatment. Circulating levels of LPS were monitored (via limulus amoebocyte coagulation assay) during AMPH or EIH exposure. Blood LPS levels were detected in 40-50% of the AMPH and EIH rats, but the presence of LPS in the serum had no effect on organ damage or striatal dopamine depletions (neurotoxicity). In both CR and NCTR rats, serum bound urea nitrogen and creatinine levels increased at 3h after EIH or AMPH (2- to 3-fold above control) but subsided by 1 day. Alanine transaminase was increased (indicating liver dysfunction) by both AMPH and EIH at 3 h (2- to 10-fold above control) in CR rats, but the levels were not significantly different between the control and AMPH groups in NCTR animals. Mild liver necrosis was detected in 1 of 7 rats examined in the AMPH group and in 1 of 5 rats examined in the EIH group (only NCTR rats were examined). Serum myoglobin increased (indicating muscle damage) in both CR and NCTR rats at 3h and was more pronounced with AMPH (≈5-fold above control) than EIH. Our results indicate that: (1) "free" blood borne LPS often increases with EIH and AMPH but may not be necessary for striatal neurotoxicity and CNS immune responses; (2) liver or kidney dysfunction may result from muscle damage; however, it is not sufficient nor necessary to produce, but may exacerbate, neurotoxicity; (3) AMPH-induced serum myoglobin release is a potential biomarker and possibly a factor in AMPH-induced toxicity processes.


Asunto(s)
Anfetamina , Ganglios Basales/metabolismo , Lipopolisacáridos/sangre , Mioglobina/sangre , Síndromes de Neurotoxicidad/sangre , Animales , Ganglios Basales/patología , Biomarcadores/sangre , Regulación de la Temperatura Corporal , Modelos Animales de Enfermedad , Dopamina/metabolismo , Fiebre/sangre , Fiebre/etiología , Fiebre/fisiopatología , Hipertermia Inducida , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Necrosis , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
12.
Toxicol Appl Pharmacol ; 185(3): 153-65, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12498732

RESUMEN

Fumonisinmycotoxins are produced by Fusaria fungi that grow worldwide primarily on corn. Fumonisin B(1), the most predominant form in corn samples, is a renal carcinogen in male F344/N rats and a hepatocarcinogen in female B6C3F(1) mice when fed at concentrations higher than 50 ppm (70 micromol/kg) in the diet for 2 years. We sought to determine the relative toxicities of several naturally occurring fumonisin derivatives when included in the diet of female B6C3F(1) mice. Mice were fed diets containing fumonisin B(1), fumonisin B(2), fumonisin B(3), fumonisin P1, hydrolyzed-fumonisin B(1), N-(acetyl)fumonisin B(1), or N-(carboxymethyl)fumonisin B(1) (approximately 0, 14, 70, and 140 micromol/kg diet) for 28 days. None of the doses used caused a decrease in body weight gain over the 28 days. Serum levels of total bile acids, cholesterol, and alkaline phosphatase were increased only in mice receiving 72 and 143 micromol/kg fumonisin B(1), suggesting that only fumonisin B(1) was hepatotoxic in the mice. Corroborating this observation, the liver weight, relative to body weight, was decreased only in the mice that consumed 143 micromol/kg fumonisin B(1). Consistent with fumonisin B(1) inhibition of ceramide synthase, the liver sphinganine-to-sphingosine ratio was increased and the liver ceramide levels were decreased only in the mice receiving 72 and 143 micromol/kg fumonisin B(1). Increased hepatocellular apoptosis, hepatocellular hypertrophy, Kupffer cell hyperplasia, and macrophage pigmentation were detected in the mice consuming 72 and 143 micromol/kg fumonisin B(1). The other fumonisin derivatives did not alter serum analytes, organ weights, or hepatic structure. These results suggest that, of the naturally occurring fumonisins, fumonisin B(1) is the principal hepatotoxic derivative in the B6C3F(1) mouse.


Asunto(s)
Carcinógenos Ambientales/toxicidad , Fumonisinas/toxicidad , Esfingosina/análogos & derivados , Fosfatasa Alcalina/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Análisis Químico de la Sangre , Peso Corporal/efectos de los fármacos , Carcinógenos Ambientales/química , Ceramidas/metabolismo , Colesterol/sangre , Cromatografía Líquida de Alta Presión , Dieta , Femenino , Fumonisinas/química , Ratones , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , Proteinuria/metabolismo , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA