Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200231, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455551

RESUMEN

We consider a two-level quantum system interacting with two classical time-periodic electromagnetic fields. The frequency of one of the fields far exceeds that of the other. The effect of the high-frequency field can be averaged out of the dynamics to realize an effective transition frequency of the field-dressed two-level system. We examine the linear response, second harmonic response and Stokes and anti-Stokes Raman response of the dressed two-level system, to the weak frequency field. The vibrational resonance enhancement in each case is demonstrated for optimal strength of the high-frequency field. Our theoretical scheme is corroborated by full numerical simulation of the two-level, two-field dynamics governed by loss-free Bloch equations. We suggest that quantum optics can offer an interesting arena for the study of the vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

2.
Phys Rev E ; 106(2-1): 024203, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36109927

RESUMEN

We consider a class of nonlinear Langevin equations with additive, Gaussian white noise. Because of nonlinearity, the calculation of moments poses a serious problem for any direct solution of the Langevin equation. Based on multiple timescale analysis we introduce a scheme for directly solving the equations. We first derive the equations for the fast and slow dynamics, in the spirit of the Blekhman perturbation method in vibrational mechanics, the fast motion being described by the Brownian motion of a harmonic oscillator whose effect is subsumed in the slow motion resulting in a parametrically driven nonlinear oscillator. The multiple timescale perturbation theory is then used to obtain a secular divergence-free analytic solution for the slow nonlinear dynamics for calculation of the moments. Our analytical results for mean-square displacement are corroborated with direct numerical simulation of Langevin equations.

3.
Phys Rev E ; 104(1-1): 014202, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34412231

RESUMEN

We consider a quantum two-level system in bichromatic classical time-periodic fields, the frequency of one of which far exceeds that of the other. Based on systematic separation of timescales and averaging over the fast motion a reduced quantum dynamics in the form of a nonlinear forced Mathieu equation is derived to identify the stable oscillatory resonance zones intercepted by unstable zones in the frequency-amplitude plot. We show how this forcing of the dressed two-level system may generate the subharmonics and superharmonics of the weak field in the stable region, which can be amplified by optimization of the strength of the high frequency field. We have carried out detailed numerical simulations of the driven quantum dynamics to corroborate the theoretical analysis.

4.
Phys Rev E ; 102(5-1): 052209, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327123

RESUMEN

We consider a model reaction-diffusion system with two coupled layers in which one of the components in a layer is parametrically driven by a periodic force. On perturbation of a homogeneous stable steady state, the system exhibits parametric instability inducing synchronization in temporal oscillation at half the forcing frequency in absence of diffusion and spatiotemporal patterns in presence of diffusion, when strength of parametric forcing and the strength of coupling are kept above their critical thresholds. We have formulated a general scheme to derive analytically the critical thresholds and dispersion relation to locate the unstable spatial modes lying between the tilted Arnold tongue in the amplitude-frequency plot. Full numerical simulations on Gierer-Meinhardt activator-inhibitor model corroborate our theoretical analysis on parametric instability-induced antiphase synchronization in chemical oscillation and spatiotemporal pattern formation, between the two layers.

5.
Phys Rev E ; 101(1-1): 012611, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32069557

RESUMEN

We consider a mixture of active solute molecules in a suspension of passive solvent particles comprising a thermal bath. The solute molecules are considered to be extended objects with two chemically distinct heads, one head of which having chemical affinity towards the solvent particles. The coupled Langevin equations for the solvent particles along with the equations governing the dynamics of active molecules are numerically simulated to show how the active molecules self-assemble to form clusters which remain in dynamic equilibrium with the free solute molecules. We observe an interesting crossover at an intermediate time in the variation of the order parameter with time when the temperature of the bath is changed signifying the differential behavior of clusterization below and above the crossover time associated with a transition between a thermodynamic and a quasithermodynamic regime. Enthalpy-entropy compensation in the formation of clusters below the crossover is demonstrated.

6.
Phys Rev E ; 101(5-1): 052203, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575285

RESUMEN

We present a theoretical study of the spatiotemporal antiresonance in a system of two diffusively coupled chemical reactions, one of which is driven by an external periodic forcing. Although antiresonance is well known in various physical systems, the phenomenon in coupled chemical reactions has largely been overlooked. Based on the linearized dynamics around the steady state of the two-component coupled reaction-diffusion systems we have derived the general analytical expressions for the amplitude-frequency response functions of the driven and undriven components of the system. Our theoretical analysis is well corroborated by detailed numerical simulations on coupled Gray-Scott reaction-diffusion systems exhibiting antiresonance dip in the amplitude-frequency response curve as a result of destructive interference between the coupling and the periodic external forcing imparting differential stability of the two subsystems. This leads to the emergence of spatiotemporal patterns in an undriven subsystem, while the driven one settles down to a homogeneously stable steady state.

7.
Phys Rev E ; 97(2-1): 022213, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29548232

RESUMEN

We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

8.
Phys Rev E ; 97(4-1): 042125, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758662

RESUMEN

We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

9.
Phys Rev E ; 94(4-1): 042223, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841603

RESUMEN

We have analyzed the differential flow-induced instability in the presence of diffusive transport in a reaction-diffusion system following activator-inhibitor kinetics. The conspicuous interaction of differential flow and differential diffusivity that leads to pattern selection during transition of the traveling waves from stripes to rotating spots propagating in hexagonal arrays subsequent to wave splitting has been explored on the basis of a few-mode Galerkin scheme.

10.
Phys Rev E ; 94(6-1): 062217, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085378

RESUMEN

We consider a generic reaction-diffusion-advection system where the flow velocity of the advection term is subjected to dichotomous noise with zero mean and Ornstein-Zernike correlation. A general condition for noisy-flow-induced instability is derived in the flow velocity-correlation rate parameter plane. Full numerical simulations on Gierer-Meinhardt model with activator-inhibitor kinetics have been performed to show how noisy differential flow can lead to symmetry breaking of a homogeneous stable state in the presence of noise resulting in traveling waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA