Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351433

RESUMEN

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Asunto(s)
Enfermedades Óseas Metabólicas , Cutis Laxo , Animales , Humanos , Ratones , Colágeno/genética , Cutis Laxo/genética , Elastina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047755

RESUMEN

AMACO (VWA2 protein), secreted by epithelial cells, is strongly expressed at basement membranes when budding or invagination occurs in embryos. In skin, AMACO associates with proteins of the Fraser complex, which form anchoring cords. These, during development, temporally stabilize the dermal-epidermal junction, pending the formation of collagen VII-containing anchoring fibrils. Fraser syndrome in humans results if any of the core members of the Fraser complex (Fras1, Frem1, Frem2) are mutated. Fraser syndrome is characterized by subepidermal blistering, cryptophthalmos, and syndactyly. In an attempt to determine AMACO function, we generated and characterized AMACO-deficient mice. In contrast to Fraser complex mutant mice, AMACO-deficient animals lack an obvious phenotype. The mutually interdependent basement membrane deposition of the Fraser complex proteins, and the formation of anchoring cords, are not affected. Furthermore, hair follicle development in newborn AMACO-deficient mice showed no gross aberration. Surprisingly, it appears that, while AMACO is a component of the anchoring cords, it is not essential for their formation or function.


Asunto(s)
Proteínas de la Matriz Extracelular , Síndrome de Fraser , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Fraser/metabolismo , Piel/metabolismo
3.
Eur J Immunol ; 51(9): 2345-2347, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34180542

RESUMEN

The monoclonal antibody ER-TR7 was used in a great number of studies for detecting reticular fibroblasts and the ECM of lymphoid and non-lymphoid organs even if the protein recognized by the ER-TR7 antibody was not known. We have now identified native collagen VI microfibrils as its tissue antigen.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Colágeno Tipo VI/inmunología , Células del Estroma/inmunología , Animales , Antígenos/inmunología , Ratones , Bazo/citología , Bazo/inmunología , Timo/citología , Timo/inmunología
4.
J Biol Chem ; 295(36): 12755-12771, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32719005

RESUMEN

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.


Asunto(s)
Colágeno Tipo VI/química , Enfermedades Musculares , Mutación , Colágeno Tipo VI/genética , Cristalografía por Rayos X , Humanos , Dominios Proteicos
5.
FASEB J ; 34(9): 12040-12052, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716577

RESUMEN

Although collagens are the most abundant proteins implicated in various disease pathways, essential mechanisms required for their proper folding and assembly are poorly understood. Heat-shock protein 47 (HSP47), an ER-resident chaperone, was mainly reported to fulfill key functions in folding and secretion of fibrillar collagens by stabilizing pro-collagen triple-helices. In this study, we demonstrate unique functions of HSP47 for different collagen subfamilies. Our results show that HSP47 binds to the N-terminal region of procollagen I and is essential for its secretion. However, HSP47 ablation does not majorly impact collagen VI secretion, but its lateral assembly. Moreover, specific ablation of Hsp47 in murine keratinocytes revealed a new role for the transmembrane collagen XVII triple-helix formation. Incompletely folded collagen XVII C-termini protruding from isolated HSP47 null keratinocyte membrane vesicles could be fully restored upon the application of recombinant HSP47. Thus, our study expands the current view regarding the client repertoire and function of HSP47, as well as emphasizes its importance for transmembrane collagen folding.


Asunto(s)
Proteínas del Choque Térmico HSP47/metabolismo , Queratinocitos/metabolismo , Procolágeno/metabolismo , Pliegue de Proteína , Animales , Proteínas del Choque Térmico HSP47/genética , Ratones , Procolágeno/genética
6.
J Biol Chem ; 294(37): 13769-13780, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31346034

RESUMEN

The assembly of collagen VI microfibrils is a multistep process in which proteolytic processing within the C-terminal globular region of the collagen VI α3 chain plays a major role. However, the mechanisms involved remain elusive. Moreover, C5, the short and most C-terminal domain of the α3 chain, recently has been proposed to be released as an adipokine that enhances tumor progression, fibrosis, inflammation, and insulin resistance and has been named "endotrophin." Serum endotrophin could be a useful biomarker to monitor the progression of such disorders as chronic obstructive pulmonary disease, systemic sclerosis, and kidney diseases. Here, using biochemical and isotopic MS-based analyses, we found that the extracellular metalloproteinase bone morphogenetic protein 1 (BMP-1) is involved in endotrophin release and determined the exact BMP-1 cleavage site. Moreover, we provide evidence that several endotrophin-containing fragments are present in various tissues and body fluids. Among these, a large C2-C5 fragment, which contained endotrophin, was released by furin-like proprotein convertase cleavage. By using immunofluorescence microscopy and EM, we also demonstrate that these proteolytic maturations occur after secretion of collagen VI tetramers and during microfibril assembly. Differential localization of N- and C-terminal regions of the collagen VI α3 chain revealed that cleavage products are deposited in tissue and cell cultures. The detailed information on the processing of the collagen VI α3 chain reported here provides a basis for unraveling the function of endotrophin (C5) and larger endotrophin-containing fragments and for refining their use as biomarkers of disease progression.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Colágeno Tipo VI/metabolismo , Proproteína Convertasas/metabolismo , Fibrosis , Furina/metabolismo , Células HEK293 , Humanos , Resistencia a la Insulina , Microfibrillas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteolisis
7.
J Biol Chem ; 293(1): 203-214, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29146595

RESUMEN

C-type lectin domain family 3 member A (CLEC3A) is a poorly characterized protein belonging to the superfamily of C-type lectins. Its closest homologue tetranectin binds to the kringle 4 domain of plasminogen and enhances its association with tissue plasminogen activator (tPA) thereby enhancing plasmin production, but whether CLEC3A contributes to plasminogen activation is unknown. Here, we recombinantly expressed murine and human full-length CLEC3As as well as truncated forms of CLEC3A in HEK-293 Epstein-Barr nuclear antigen (EBNA) cells. We analyzed the structure of recombinant CLEC3A by SDS-PAGE and immunoblot, glycan analysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy; compared the properties of the recombinant protein with those of CLEC3A extracted from cartilage; and investigated its tissue distribution and extracellular assembly by immunohistochemistry and immunofluorescence microscopy. We found that CLEC3A mainly occurs as a monomer, but also forms dimers and trimers, potentially via a coiled-coil α-helix. We also noted that CLEC3A can be modified with chondroitin/dermatan sulfate side chains and tends to oligomerize to form higher aggregates. We show that CLEC3A is present in resting, proliferating, and hypertrophic growth-plate cartilage and assembles into an extended extracellular network in cultures of rat chondrosarcoma cells. Further, we found that CLEC3A specifically binds to plasminogen and enhances tPA-mediated plasminogen activation. In summary, we have determined the structure, tissue distribution, and molecular function of the cartilage-specific lectin CLEC3A and show that CLEC3A binds to plasminogen and participates in tPA-mediated plasminogen activation.


Asunto(s)
Lectinas Tipo C/metabolismo , Activadores Plasminogénicos/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Secuencia de Aminoácidos , Animales , Cartílago/metabolismo , Cromatografía en Gel , Células HEK293 , Humanos , Inmunohistoquímica , Lectinas Tipo C/biosíntesis , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Plasminógeno/metabolismo , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
8.
J Cell Sci ; 129(4): 706-16, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26746240

RESUMEN

Cartilage oligomeric matrix protein (COMP) is an abundant component in the extracellular matrix (ECM) of load-bearing tissues such as tendons and cartilage. It provides adaptor functions by bridging different ECM structures. We have previously shown that COMP is also a constitutive component of healthy human skin and is strongly induced in fibrosis. It binds directly and with high affinity to collagen I and to collagen XII that decorates the surface of collagen I fibrils. We demonstrate here that lack of COMP-collagen interaction in the extracellular space leads to changes in collagen fibril morphology and density, resulting in altered skin biomechanical properties. Surprisingly, COMP also fulfills an important intracellular function in assisting efficient secretion of collagens, which were retained in the endoplasmic reticulum of COMP-null fibroblasts. Accordingly, COMP-null mice showed severely attenuated fibrotic responses in skin. Collagen secretion was fully restored by introducing wild-type COMP. Hence, our work unravels a new, non-structural and intracellular function of the ECM protein COMP in controlling collagen secretion.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/genética , Colágenos Fibrilares/metabolismo , Piel/metabolismo , Animales , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico , Femenino , Fibroblastos/metabolismo , Fibrosis , Ratones Endogámicos C57BL , Piel/patología
9.
Exp Dermatol ; 27(8): 807-814, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28940785

RESUMEN

Transglutaminases (TGs) are structurally and functionally related enzymes that modify the post-translational structure and activity of proteins or peptides, and thus are able to turn on or switch off their function. Depending on location and activities, TGs are able to modify the signalling, the function and the fate of cells and extracellular connective tissues. Besides mouse models, human diseases enable us to appreciate the function of various TGs. In this study, skin diseases induced by genetic damages or autoimmune targeting of these enzymes will be discussed. TG1, TG3 and TG5 contribute to the cutaneous barrier and thus to the integrity and function of epidermis. TGM1 mutations related to autosomal recessive ichthyosis subtypes, TGM5 mutations to a mild epidermolysis bullosa phenotype and as novelty TGM3 mutation to uncombable hair syndrome will be discussed. Autoimmunity to TG2, TG3 and TG6 may develop in a few of those genetically determined individuals who lost tolerance to gluten, and manifest as coeliac disease, dermatitis herpetiformis or gluten-dependent neurological symptoms, respectively. These gluten responder diseases commonly occur in combination. In autoimmune diseases, the epitope spreading is remarkable, while in some inherited pathologies, a unique compensation of the lost enzyme function is noted.


Asunto(s)
Dermatitis Herpetiforme/inmunología , Epítopos/inmunología , Transglutaminasas/fisiología , Animales , Apoptosis , Autoanticuerpos/inmunología , Enfermedad Celíaca/inmunología , Linaje de la Célula , Dermatitis Herpetiforme/enzimología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Transducción de Señal , Piel/enzimología , Piel/inmunología , Transglutaminasas/genética
10.
Int J Mol Sci ; 19(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439465

RESUMEN

Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the X or Y position within the Gly-X-Y cause different phenotypes like Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC). We investigated the consequences of arginine to cysteine substitutions (X or Y position within the Gly-X-Y) towards the N and C terminus of the triple helix. Protein expression and its secretion trafficking were analyzed. Substitutions R75C, R134C and R704C did not alter the thermal stability with respect to wild type; R740C and R789C proteins displayed significantly reduced melting temperatures (Tm) affecting thermal stability. Additionally, R740C and R789C were susceptible to proteases; in cell culture, R789C protein was further cleaved by matrix metalloproteinases (MMPs) resulting in expression of only a truncated fragment affecting its secretion and intracellular retention. Retention of misfolded R740C and R789C proteins triggered an ER stress response leading to apoptosis of the expressing cells. Arginine to cysteine mutations towards the C-terminus of the triple helix had a deleterious effect, whereas mutations towards the N-terminus of the triple helix (R75C and R134C) and R704C had less impact.


Asunto(s)
Sustitución de Aminoácidos , Colágeno Tipo II/genética , Osteocondrodisplasias/congénito , Respuesta de Proteína Desplegada , Línea Celular Tumoral , Supervivencia Celular , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Células HEK293 , Humanos , Osteocondrodisplasias/genética , Desnaturalización Proteica , Dominios Proteicos , Estabilidad Proteica , Transporte de Proteínas
11.
J Biol Chem ; 291(10): 5247-58, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26742845

RESUMEN

Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.


Asunto(s)
Colágeno Tipo IV/química , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína
12.
Cell Tissue Res ; 367(2): 359-367, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27666725

RESUMEN

Collagen IX (Col IX) is a component of the cartilage extracellular matrix and contributes to its structural integrity. Polymorphisms in the genes encoding the Col IX ɑ2- and ɑ3-chains are associated with early onset of disc degeneration. Col IX-deficient mice already display changes in the spine at the newborn stage and premature disc degeneration starting at 6 months of age. To determine the role of Col IX in early spine development and to identify molecular mechanisms underlying disc degeneration, the embryonic development of the spine was analyzed in Col IX -/- mice. Histological staining was used to show tissue morphology at different time points. Localization of extracellular matrix proteins as well as components of signaling pathways were analyzed by immunohistochemistry. Developing vertebral bodies of Col IX -/- mice were smaller and already appeared more compact at E12.5. At E15.5, vertebral bodies of Col IX -/- mice revealed an increased number of hypertrophic chondrocytes as well as enhanced staining for the terminal differentiation markers alkaline phosphatase and collagen X. This correlates with an imbalance in the Ihh-PTHrP signaling pathway at this time point, reflected by an increase of Ihh and a concomitant decrease of PTHrP expression. An accelerated hypertrophic differentiation caused by a disturbed Ihh-PTHrP signaling pathway may lead to a higher bone mineral density in the vertebral bodies of newborn Col IX -/- mice and, as a result, to the early onset of disc degeneration.


Asunto(s)
Diferenciación Celular , Colágeno Tipo IX/deficiencia , Embrión de Mamíferos/patología , Retroalimentación Fisiológica , Proteínas Hedgehog/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Columna Vertebral/embriología , Columna Vertebral/patología , Animales , Colágeno Tipo II/metabolismo , Colágeno Tipo IX/metabolismo , Hipertrofia , Vértebras Lumbares/embriología , Ratones , Ratones Endogámicos C57BL
13.
Stem Cells ; 34(5): 1297-309, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26934179

RESUMEN

microRNAs (miRNAs) can regulate the interplay between perivascular cells (PVC) and endothelial cells (EC) during angiogenesis, but the relevant PVC-specific miRNAs are not yet defined. Here, we identified miR-126-3p and miR-146a to be exclusively upregulated in PVC upon interaction with EC, determined their influence on the PVC phenotype and elucidate their molecular mechanisms of action. Specifically the increase of miR-126-3p strongly promoted the motility of PVC on the basement membrane-like composite and stabilized networks of EC. Subsequent miRNA target analysis showed that miR-126-3p inhibits SPRED1 and PLK2 expression, induces ERK1/2 phosphorylation and stimulates TLR3 expression to modulate cell-cell and cell-matrix contacts of PVC. Gain of expression experiments in vivo demonstrated that miR-126-3p stimulates PVC coverage of newly formed vessels and transform immature into mature, less permeable vessels. In conclusion we showed that miR-126-3p regulates matrix-dependent PVC migration and intercellular interaction to modulate vascular integrity. Stem Cells 2016;34:1297-1309.


Asunto(s)
Vasos Sanguíneos/citología , Comunicación Celular/genética , Movimiento Celular/genética , Matriz Extracelular/metabolismo , MicroARNs/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Quimiocinas/metabolismo , Técnicas de Cocultivo , Colágeno/farmacología , Combinación de Medicamentos , Matriz Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Laminina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , MicroARNs/genética , Neovascularización Fisiológica/genética , Proteoglicanos/farmacología , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Int J Mol Sci ; 18(6)2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28556799

RESUMEN

Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/--insulin receptor substrate-1 (IRS-1)+/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Receptor de Insulina/metabolismo , Animales , Glucemia/metabolismo , Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Receptor de Insulina/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
J Biol Chem ; 289(3): 1505-18, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24293366

RESUMEN

Matrilin-1 is the prototypical member of the matrilin protein family and is highly expressed in cartilage. However, gene targeting of matrilin-1 in mouse did not lead to pronounced phenotypes. Here we used the zebrafish as an alternative model to study matrilin function in vivo. Matrilin-1 displays a multiphasic expression during zebrafish development. In an early phase, with peak expression at about 15 h post-fertilization, matrilin-1 is present throughout the zebrafish embryo with exception of the notochord. Later, when the skeleton develops, matrilin-1 is expressed mainly in cartilage. Morpholino knockdown of matrilin-1 results both in overall growth defects and in disturbances in the formation of the craniofacial cartilage, most prominently loss of collagen II deposition. In fish with mild phenotypes, certain cartilage extracellular matrix components were present, but the tissue did not show features characteristic for cartilage. The cells showed endoplasmic reticulum aberrations but no activation of XBP-1, a marker for endoplasmic reticulum stress. In severe phenotypes nearly all chondrocytes died. During the early expression phase the matrilin-1 knockdown had no effects on cell morphology, but increased cell death was observed. In addition, the broad deposition of collagen II was largely abolished. Interestingly, the early phenotype could be rescued by the co-injection of mRNA coding for the von Willebrand factor C domain of collagen IIα1a, indicating that the functional loss of this domain occurs as a consequence of matrilin-1 deficiency. The results show that matrilin-1 is indispensible for zebrafish cartilage formation and plays a role in the early collagen II-dependent developmental events.


Asunto(s)
Cartílago/embriología , Colágeno Tipo II/metabolismo , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Matrilinas/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Cartílago/citología , Colágeno Tipo II/genética , Embrión no Mamífero/citología , Desarrollo Embrionario/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Matrilinas/genética , Ratones , Morfolinos/farmacología , Pez Cebra/genética , Proteínas de Pez Cebra
16.
Protein Expr Purif ; 107: 20-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25462806

RESUMEN

VWA domains are the predominant independent folding units within matrilins and mediate protein-protein interactions. Mutations in the matrilin-3 VWA domain cause various skeletal diseases. The analysis of the pathological mechanisms is hampered by the lack of detailed structural information on matrilin VWA domains. Attempts to resolve their structures were hindered by low solubility and a tendency to aggregation. We therefore took a comprehensive approach to improve the recombinant expression of functional matrilin VWA domains to enable X-ray crystallography and nuclear magnetic resonance (NMR) studies. The focus was on expression in Escherichia coli, as this allows incorporation of isotope-labeled amino acids, and on finding conditions that enhance solubility. Indeed, circular dichroism (CD) and NMR measurements indicated a proper folding of the bacterially expressed domains and, interestingly, expression of zebrafish matrilin VWA domains and addition of N-ethylmaleimide yielded the most stable proteins. However, such proteins did still not crystallize and allowed only partial peak assignment in NMR. Moreover, bacterially expressed matrilin VWA domains differ in their solubility and functional properties from the same domains expressed in eukaryotic cells. Structural studies of matrilin VWA domains will depend on the use of eukaryotic expression systems.


Asunto(s)
Proteínas Matrilinas/química , Proteínas Matrilinas/genética , Animales , Dicroismo Circular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Matrilinas/aislamiento & purificación , Proteínas Matrilinas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Pez Cebra
17.
Liver Int ; 35(4): 1265-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24905825

RESUMEN

BACKGROUND & AIMS: Matrilins are a family of four oligomeric adaptor proteins whose functions in extracellular matrix assembly during pathophysiological events still need to be explored in more detail. Matrilin-2 is the largest family member and the only matrilin expressed in the naive liver. Several studies demonstrate that matrilin-2 interacts with collagen I, fibronectin or laminin-111-nidogen-1 complexes. All these matrix components get upregulated during hepatic scar tissue formation. Therefore, we tested whether matrilin-2 has an influence on the formation and/or the resolution of fibrotic tissue in the mouse liver. METHODS: Fibrosis was induced by infection with an adenovirus encoding cytochrome P450 2D6 (autoimmune liver damage) or by exposure to the hepatotoxin carbon tetrachloride. Fibrosis severity and matrilin-2 expression were assessed by immunohistochemistry. Hepatic stellate cells (HSCs) were isolated and analysed by immunocytochemistry and Transwell migration assays. RESULTS: Both autoimmune as well as chemically induced liver damage led to simultaneous upregulation of matrilin-2 and collagen I expression. Discontinuation of carbon tetrachloride exposure resulted in concomitant dissolution of both proteins. Activated HSCs were the source of de novo matrilin-2 expression. Comparing wild type and matrilin-2-deficient mice, no differences were detected in fibronectin and collagen I upregulation and resolution kinetics as well as amount or location of fibronectin and collagen I production and degradation. CONCLUSIONS: Our findings suggest that the absence of matrilin-2 has no effect on HSC activation and regression kinetics, synthetic activity, proliferative capacity, motility, or HSC apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatitis Autoinmune/metabolismo , Cirrosis Hepática Experimental/metabolismo , Hígado/metabolismo , Animales , Apoptosis , Línea Celular , Movimiento Celular , Proliferación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/patología , Humanos , Cinética , Hígado/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Proteínas Matrilinas/deficiencia , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad , Transducción de Señal , Regulación hacia Arriba
18.
Connect Tissue Res ; 56(4): 307-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803621

RESUMEN

Collagen II is the major fibril-forming collagen in cartilage. Complete absence of collagen II in mice is not compatible with life and in humans mutations in the COL2A1 gene lead to osteochondrodysplasias with diverse phenotypes. However, mechanistic studies on how chondrocytes respond to a lack of collagen II in their extracellular matrix are limited. Primary mouse chondrocytes were isolated from knee joints of newborn mice and transfected with siRNA targeting Col2α1 to suppress collagen II expression. The expression of integrin receptors and matrix proteins was investigated by RT-PCR and immunoblots. The localization of matrix components was evaluated by immunostaining. Signaling pathways and the differentiation state of chondrocytes was monitored by RT-PCR and flow cytometry. We demonstrate that in the absence of collagen II chondrocytes start to produce collagen I. Some binding partners of collagen II are partially lost from the matrix while other proteins, e.g. COMP, were still found associated with the newly formed collagen network. The lack of collagen II induced changes in the expression profile of integrins. Further, we detected alterations in the Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) pathway that were accompanied by changes in the differentiation state of chondrocytes. Collagen II seems not to be essential for chondrocyte survival in culture but it plays an important role in maintaining chondrocyte differentiation. We suggest that a crosstalk between extracellular matrix and cells via integrins and the Ihh/PTHrP pathway is involved in regulating the differentiation state of chondrocytes.


Asunto(s)
Diferenciación Celular/fisiología , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Regulación de la Expresión Génica/fisiología , Integrinas/metabolismo , Animales , Condrocitos/citología , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Proteína Relacionada con la Hormona Paratiroidea/metabolismo
19.
J Biol Chem ; 288(13): 9303-12, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23420842

RESUMEN

The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/metabolismo , Clatrina/metabolismo , Dendritas , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación , Plasticidad Neuronal , Neuronas/metabolismo , Fosforilación , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sinapsis/metabolismo , Transmisión Sináptica
20.
J Hepatol ; 60(4): 816-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24291365

RESUMEN

BACKGROUND & AIMS: To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS: Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS: HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS: Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.


Asunto(s)
Adaptación Fisiológica , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Mitocondrias Hepáticas/fisiología , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/fisiopatología , Expresión Génica , Proteínas Sustrato del Receptor de Insulina/deficiencia , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Canales Iónicos/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Fosforilación Oxidativa , Fuerza Protón-Motriz , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteína Desacopladora 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA