RESUMEN
S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters. Mice born deficient in one of these, spinster homolog 2 (Spns2), are lymphocytopenic and have low lymph S1P concentrations. Such observations suggest that inhibition of Spns2-mediated S1P transport might provide another therapeutically beneficial method to modulate immune cell positioning. We report here results using a novel S1P transport blocker (STB), SLF80821178, to investigate the consequences of S1P transport inhibition in rodents. We found that SLF80821178 is efficacious in a multiple sclerosis model but - unlike the SRM fingolimod - neither decreases heart rate nor compromises lung endothelial barrier function. Notably, although Spns2 null mice have a sensorineural hearing defect, mice treated chronically with SLF80821178 have normal hearing acuity. STBs such as SLF80821178 evoke a dose-dependent decrease in peripheral blood lymphocyte counts, which affords a reliable pharmacodynamic marker of target engagement. However, the maximal reduction in circulating lymphocyte counts in response to SLF80821178 is substantially less than the response to SRMs such as fingolimod (50% vs. 90%) due to a lesser effect on T lymphocyte sub-populations by SLF80821178. Finally, in contrast to results obtained with Spns2 deficient mice, lymph S1P concentrations were not significantly changed in response to administration of STBs at doses that evoke maximal lymphopenia, which indicates that current understanding of the mechanism of action of S1P transport inhibitors is incomplete.