RESUMEN
BACKGROUND: Antibodies to human full-length myelin oligodendrocyte glycoprotein (MOG-IgG) as detected by new-generation cell-based assays have recently been described in patients presenting with acute demyelinating disease of the central nervous system, including patients previously diagnosed with multiple sclerosis (MS). However, only limited data are available on the relevance of MOG-IgG testing in patients with chronic progressive demyelinating disease. It is unclear if patients with primary progressive MS (PPMS) or secondary progressive MS (SPMS) should routinely be tested for MOG-IgG. OBJECTIVE: To evaluate the frequency of MOG-IgG among patients classified as having PPMS or SPMS based on current diagnostic criteria. METHODS: For this purpose, we retrospectively tested serum samples of 200 patients with PPMS or SPMS for MOG-IgG using cell-based assays. In addition, we performed a review of the entire English language literature on MOG-IgG published between 2011 and 2017. RESULTS: None of 139 PPMS and 61 SPMS patients tested was positive for MOG-IgG. Based on a review of the literature, we identified 35 further MOG-IgG tests in patients with PPMS and 55 in patients with SPMS; the only reportedly positive sample was positive just at threshold level and was tested in a non-IgG-specific assay. In total, a single borderline positive result was observed among 290 tests. CONCLUSION: Our data suggest that MOG-IgG is absent or extremely rare among patients with PPMS or SPMS. Routine screening of patients with typical PPMS/SPMS for MOG-IgG seems not to be justified.
Asunto(s)
Inmunoglobulina G/sangre , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Crónica Progresiva/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Bases de Datos Bibliográficas , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Transfección , Adulto JovenRESUMEN
Ocrelizumab is a B cell-depleting drug widely used in relapsing-remitting multiple sclerosis (RRMS) and primary-progressive MS. In RRMS, it is becoming increasingly apparent that accumulation of disability not only manifests as relapse-associated worsening (RAW) but also as progression independent of relapse activity (PIRA) throughout the disease course. This study's objective was to investigate the role of PIRA in RRMS patients treated with ocrelizumab. We performed a single-center, retrospective, cross-sectional study of clinical data acquired at a German tertiary multiple sclerosis referral center from 2018 to 2022. All patients with RRMS treated with ocrelizumab for at least six months and complete datasets were analyzed. Confirmed disability accumulation (CDA) was defined as a ≥ 12-week confirmed increase from the previous expanded disability status scale (EDSS) score of ≥ 1.0 if the previous EDSS was ≤ 5.5 or a ≥ 0.5-point increase if the previous EDSS was > 5.5. PIRA was defined as CDA without relapse since the last EDSS measurement and at least for the preceding 12 weeks. RAW was defined as CDA in an interval of EDSS measurements with ≥ 1 relapses. Cox proportional hazard models were used to analyze the probability of developing PIRA depending on various factors, including disease duration, previous disease-modifying treatments (DMTs), and optical coherence tomography-assessed retinal degeneration parameters. 97 patients were included in the analysis. Mean follow-up time was 29 months (range 6 to 51 months). 23.5% developed CDA under ocrelizumab therapy (n = 23). Of those, the majority developed PIRA (87.0% of CDA, n = 20) rather than RAW (13.0% of CDA, n = 3). An exploratory investigation using Cox proportional hazards ratios revealed two possible factors associated with an increased probability of developing PIRA: a shorter disease duration prior to ocrelizumab (p = 0.02) and a lower number of previous DMTs prior to ocrelizumab (p = 0.04). Our data show that in ocrelizumab-treated RRMS patients, the main driver of disability accumulation is PIRA rather than RAW. Furthermore, these real-world data show remarkable consistency with data from phase 3 randomized controlled trials of ocrelizumab in RRMS, which may increase confidence in translating results from tightly controlled RCTs into the real-world clinical setting.
Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Estudios Transversales , Estudios Retrospectivos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Enfermedad CrónicaRESUMEN
Diffusion-weighted magnetic resonance imaging (dMRI) enables the microstructural characterization and reconstruction of white matter pathways in vivo non-invasively. However, dMRI only provides information on the orientation of potential fibers but not on their anatomical plausibility. To that end, recent methodological advances facilitate the effective use of anatomical priors in the process of fiber reconstruction, thus improving the accuracy of the results. Here, we investigated the potential of anatomically constrained tracking (ACT), a modular addition to the tractography software package MRtrix3, to accurately reconstruct the optic radiation, a commonly affected pathway in multiple sclerosis (MS). Diffusion MRI data were acquired from 28 MS patients and 22 age- and sex-matched healthy controls. For each participant, the optic radiation was segmented based on the fiber reconstruction obtained using ACT. When implementing ACT in MS, it proved essential to incorporate lesion maps to avoid incorrect reconstructions due to tissue-type misclassifications in lesional areas. The ACT-based results were compared with those obtained using two commonly used probabilistic fiber tracking procedures, based on FSL (FMRIB Software Library) and MRtrix3 without ACT. All three procedures enabled a reliable localization of the optic radiation in both MS patients and controls. However, for FSL and MRtrix3 without ACT it was necessary to place an additional waypoint halfway between the lateral geniculate nucleus and the primary visual cortex to filter out anatomically implausible tracks. In the case of ACT, the results with and without an additional waypoint were virtually identical, presumably because the employed anatomical constraints already prevented the occurrence of the most implausible tracks. Irrespective of the employed tractography procedure, increased diffusivity and decreased anisotropy were found in the optic radiation of the MS patients compared to the controls.