Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677808

RESUMEN

Due to genetic changes in DNA (deoxyribonucleic acid) sequences, cancer continues to be the second most prevalent cause of death. The traditional target-directed approach, which is confronted with the importance of target function in healthy cells, is one of the most significant challenges in anticancer research. Another problem with cancer cells is that they experience various mutations, changes in gene duplication, and chromosomal abnormalities, all of which have a direct influence on the potency of anticancer drugs at different developmental stages. All of these factors combine to make cancer medication development difficult, with low clinical licensure success rates when compared to other therapy categories. The current review focuses on the pathophysiology and molecular aspects of common cancer types. Currently, the available chemotherapeutic drugs, also known as combination chemotherapy, are associated with numerous adverse effects, resulting in the search for herbal-based alternatives that attenuate resistance due to cancer therapy and exert chemo-protective actions. To provide new insights, this review updated the list of key compounds that may enhance the efficacy of cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quimioterapia Combinada
2.
Curr Pharm Des ; 29(42): 3368-3384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38151849

RESUMEN

The term "neurodegenerative disorders" refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.


Asunto(s)
Lesiones Encefálicas , Enfermedades Neurodegenerativas , Humanos , Neuroprotección , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés del Retículo Endoplásmico , Lesiones Encefálicas/metabolismo , Estrés Oxidativo/fisiología
3.
Clin Chim Acta ; 523: 152-162, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34537216

RESUMEN

Sepsis is a clinical syndrome resulting from infection followed by inflammation and is one of the significant causes of mortality worldwide. The underlying reason is the host's uncontrolled inflammatory response due to an infection led to multiple organ dysfunction/failure. Neutrophils, an innate immune cell, are forerunners to reach the site of infection/inflammation for clearing the infection and resolute the inflammation during sepsis. A relatively new neutrophil effector function, neutrophil extracellular traps (NETs), have been demonstrated to kill the pathogens by releasing DNA decorated with histone and granular proteins. A growing number of pieces of shreds of evidence suggest that unregulated incidence of NETs have a significant influence on the pathogenesis of sepsis-induced multiple organ damage, including arterial hypotension, hypoxemia, coagulopathy, renal, neurological, and hepatic dysfunction. Thus, excessive production and improper resolution of NETs are of significant therapeutic value in combating sepsis-induced multiple organ failure. The purpose of this review is intended to highlight the role of NETs in sepsis-induced organ failure. Furthermore, the current status of therapeutic strategies to intersect the harmful effects of NETs to restore organ functions is discussed.


Asunto(s)
Trampas Extracelulares , Sepsis , Humanos , Inflamación , Insuficiencia Multiorgánica , Neutrófilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA