RESUMEN
We studied the fire record and its environmental consequences during the Holocene in the Central Ebro Basin. This region is very sensitive to environmental changes due to its semiarid conditions, lithological features and a continuous human presence during the past 6000 years. The study area is a 6â¯m buried sequence of polycyclic soils developed approximately 9500 years ago that is exceptionally well preserved and encompasses four sedimentary units. The content and size distribution of macroscopic charcoal fragments were determined throughout the soil sequence and the analysis of the composition of charcoal, litter and sediments via analytical pyrolysis (Py-GC/MS). The high amount of charcoal fragments recovered in most horizons highlights the fire frequencies since the beginning of the Neolithic, most of which were probably of anthropogenic origin. In some soil horizons where charcoal was not found, we detected a distribution pattern of lipid compounds that could be related to biomass burning. On the other hand, the low number of pyrolysates in the charcoal could be attributed to high-intensity fires. No clear pattern was found in the composition of pyrolysates related to the age of sediments or vegetation type. The most ancient soil (Unit 1) was the richest in charcoal content and contains a higher proportion of larger fragments (>4â¯mm), which is consistent with the burning of a relatively dense vegetation cover. This buried soil has been preserved in situ, probably due to the accumulation of sedimentary materials because of a high-intensity fire. In addition, the pyrogenic C in this soil has some plant markers that could indicate a low degree of transformation. In Units 2-4, both the amount of charcoals and the proportions of macrofragments >4â¯mm are lower than those in Unit 1, which coincides with a more open forest and the presence of shrubs and herbs. The preservation of this site is key to continuing with studies that contribute to a better assessment of the consequences of future disturbances, such as landscape transformation and climate change.
Asunto(s)
Incendios , Suelo , Carbón Orgánico , Bosques , EspañaRESUMEN
The two most widely extended mountain grasslands in Europe (Nardus-mat grasslands and chalk grasslands) are distributed forming complex patterns. In the Ordesa and Monte Perdido National Park (Central Pyrenees, NE-Spain), they grow as secondary pastures within the treeline ecotone at the subalpine belt. This work aims to show the influence of soil properties on the spatial distribution of these pastures, under a dynamic geomorphology. Soils are sampled under both grasslands, which grow on different cumulative levels: Nardus-mat grasslands in the upper level (L1) and chalk grasslands in the lower level (L2). Soils in L1 have a significantly higher acidity, lower soluble ions and exchangeable calcium content than those in L2, reflecting a more intense leaching process, consistent with a longer period of slope stability. Qualitative differences are detected in the soil organic matter of the soil, using carbon and nitrogen isotopes, lighter in L2 soils than in L1 soils, due to a higher proportion of legumes growing in L2 (chalk grasslands). Soils in L1 and L2 shared many physical properties, such as a fine and homogeneous texture in the whole profile (silty clay or silty clay loam), and high aggregate stability and porosity in the topsoil. In contrast, the soils in L2 are shallower than in L1, which reduces their water-holding capacity. The soil is classified as Orthoeutric Cambisol (Clayic, Humic) in L1 but its rejuvenation, by gully erosion, transforms it into an Hypereutric Leptosol (Loamic, Ochric) in L2 (Typic Haplocryept and Lithic Haplocryept, respectively by Soil Taxonomy system). Definitely, the distribution of both grasslands for the studied area is linked to two cumulative levels of different ages, which in turn is strongy related to different soil properties.