Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R210-R219, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105763

RESUMEN

We investigated whether reducing face skin temperature alters arterial blood pressure control and lower body negative pressure (LBNP) tolerance after exercise heat stress. Eight subjects (1 female; age, 27 ± 9 yr) exercised at ∼63% V̇o2max until core temperature had increased ∼1.5°C before undergoing LBNP to presyncope either with fanning to return face skin temperature to baseline (Δ-5°C, Fan trial) or without (No Fan trial). LBNP tolerance was quantified as cumulative stress index (CSI; mmHg·min). Before LBNP, whole body and face skin temperatures were elevated from baseline in both trials (38.0 ± 0.5°C and 36.3 ± 0.5°C, respectively, both P < 0.001). During LBNP, face skin temperature decreased in the Fan trial (30.9 ± 1.0°C) but was unchanged in the No Fan trial (36.1 ± 0.6°C, between trials P < 0.001). Mean arterial pressure was not different between trials (P = 0.237) and was similarly reduced at presyncope in both trials (from 82 ± 7 to 67 ± 8 mmHg, P < 0.001). During LBNP, heart rate was attenuated in the Fan trial at Mid LBNP (146 ± 16 vs. 158 ± 12 beats/min, P = 0.036) and at peak heart rate (158 ± 15 vs. 170 ± 15 beats/min; P < 0.001). LBNP tolerance was not different between trials (321 ± 248 vs. 328 ± 115 mmHg·min, P = 0.851). In exercise heat-stressed individuals, lowering face skin temperature to normothermic values suppressed heart rate thereby altering cardiovascular control during a simulated hemorrhagic challenge without reducing tolerance.


Asunto(s)
Trastornos de Estrés por Calor , Temperatura Cutánea , Adolescente , Adulto , Femenino , Humanos , Adulto Joven , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Respuesta al Choque Térmico/fisiología , Hemorragia , Presión Negativa de la Región Corporal Inferior , Síncope , Masculino
2.
Pediatr Res ; 95(3): 660-667, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37952056

RESUMEN

BACKGROUND: Infants with a congenital diaphragmatic hernia (DH) have underdeveloped lungs and require mechanical ventilation after birth, but the optimal approach is unknown. We hypothesised that sustained inflation (SI) increases lung aeration in newborn kittens with a DH. METHODS: In pregnant New Zealand white rabbits, a left-sided DH was induced in two fetal kittens per doe at 24-days gestation (term = 32 days); litter mates acted as controls. DH and control kittens were delivered by caesarean section at 30 days, intubated and mechanically ventilated (7-10 min) with either an SI followed by intermittent positive pressure ventilation (IPPV) or IPPV throughout. The rate and uniformity of lung aeration was measured using phase-contrast X-ray imaging. RESULTS: Lung weights in DH kittens were ~57% of controls. An SI increased the rate and uniformity of lung aeration in DH kittens, compared to IPPV, and increased dynamic lung compliance in both control and DH kittens. However, this effect of the SI was lost when ventilation changed to IPPV. CONCLUSION: While an SI improved the rate and uniformity of lung aeration in both DH and control kittens, greater consideration of the post-SI ventilation strategy is required to sustain this benefit. IMPACT: Compared to intermittent positive pressure ventilation (IPPV), an initial sustained inflation (SI) increased the rate and uniformity of lung aeration after birth. However, this initial benefit is rapidly lost following the switch to IPPV. The optimal approach for ventilating CDH infants at birth is unknown. While an SI improves lung aeration in immature lungs, its effect on the hypoplastic lung is unknown. This study has shown that an SI greatly improves lung aeration in the hypoplastic lung. This study will guide future studies examining whether an SI can improve lung aeration in infants with a CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas , Humanos , Conejos , Animales , Embarazo , Femenino , Hernias Diafragmáticas Congénitas/diagnóstico por imagen , Hernias Diafragmáticas Congénitas/terapia , Animales Recién Nacidos , Cesárea , Pulmón/diagnóstico por imagen , Respiración Artificial/métodos
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836606

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Asunto(s)
Hipertensión Arterial Pulmonar/patología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Carbazoles/efectos adversos , Progresión de la Enfermedad , Medicamentos Herbarios Chinos/efectos adversos , Células Endoteliales/metabolismo , Humanos , Inflamación , Leucocitos Mononucleares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Ratas , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/sangre , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Linfocitos T/metabolismo
4.
Angew Chem Int Ed Engl ; 63(17): e202402912, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38418404

RESUMEN

Despite the importance of heteroatom-substituted cyclopropane derivatives in drug design and organic synthesis, cyclopropanethiols remain critically underexplored. Inspired by the wide use of the Newman-Kwart rearrangement to access valuable thiophenols from phenol feedstocks, we report the development of a photocatalytic approach for efficient ambient temperature aliphatic O- to S-rearrangement on tertiary cyclopropanol derivatives. After demonstrating that a range of cyclopropanethiols-that are difficult to access by other methods-can be obtained with this strategy, we show that these rearranged products can be easily hydrolyzed and further derivatized. We conclude this study with mechanistic findings that enabled an initial extension of this approach toward other classes of aliphatic alcohols.

5.
Diabetologia ; 66(3): 551-566, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36508037

RESUMEN

AIMS/HYPOTHESIS: B cells play an important role in driving the development of type 1 diabetes; however, it remains unclear how they contribute to local beta cell destruction during disease progression. Here, we use gene expression profiling of B cell subsets identified in inflamed pancreatic tissue to explore their primary functional role during the progression of autoimmune diabetes. METHODS: Transcriptional profiling was performed on FACS-sorted B cell subsets isolated from pancreatic islets and the pancreatic lymph nodes of NOD mice. RESULTS: B cells are highly modified by the inflamed pancreatic tissue and can be distinguished by their transcriptional profile from those in the lymph nodes. We identified both a discrete and a core shared gene expression profile in islet CD19+CD138- and CD19+CD138+ B cell subsets, the latter of which is known to have enriched autoreactivity during diabetes development. On localisation to pancreatic islets, compared with CD138- B cells, CD138+ B cells overexpress genes associated with adhesion molecules and growth factors. Their shared signature consists of gene expression changes related to the differentiation of antibody-secreting cells and gene regulatory networks associated with IFN signalling pathways, proinflammatory cytokines and Toll-like receptor (TLR) activation. Finally, abundant TLR7 expression was detected in islet B cells and was enhanced specifically in CD138+ B cells. CONCLUSIONS/INTERPRETATION: Our study provides a detailed transcriptional analysis of islet B cells. Specific gene signatures and interaction networks have been identified that point towards a functional role for B cells in driving autoimmune diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Diabetes Mellitus Tipo 1/metabolismo , Ratones Endogámicos NOD , Páncreas/metabolismo , Islotes Pancreáticos/metabolismo , Perfilación de la Expresión Génica
6.
Clin Sci (Lond) ; 137(1): 105-108, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36601782

RESUMEN

Epigenome changes in chronic states of cardiovascular stress including diabetes, pressure overload and cardiomyopathies frequently involve changes in open chromatin and post-translation modifications of histone lysine residues at specific amino acid positions by acetylation, methylation and phosphorylation. Since the discovery of Set7 as an important regulator of histone H3 lysine 4 methylation state, there has been wide interest in its role in cardiovascular remodeling and cardiac dysfunction. Recent transcriptome and Fourier transform infrared spectroscopy analyses and in vivo assessments of cardiac function by Lunardon and colleagues now reveal a clear role of Set7 in the regulation of the extracellular matrix composition and cardiac hypertrophy in response to chronic isoproterenol induced cardiac stress.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Lisina , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Histonas/metabolismo , Cromatina , Metilación
7.
Diabetologia ; 65(8): 1398-1411, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35587276

RESUMEN

AIMS/HYPOTHESIS: IgM is the primary antibody produced by B cells and we hypothesise that IgM antibodies to gut microbiota may play a role in immunometabolism in obesity and type 2 diabetes. To test our hypothesis, we used B6 mice deficient in activation-induced cytidine deaminase (Aid-/- [also known as Aicda-/-]) which secrete only IgM antibodies, and human faecal samples. METHODS: We studied the immunometabolic effects and gut microbial changes in high-fat-diet-induced obesity (HFDIO) in Aid-/- B6 mice compared with wild-type mice. To determine similarities between mice and humans, human stool samples were collected from children and adolescents who were obese with normal glucose tolerance (NGT), obese with glucose intolerance (IGT), or obese and newly diagnosed with type 2 diabetes, for faecal microbiota transplant (FMT) into germ-free (GF) B6 mice and we assessed IgM-bound bacteria and immune responses. RESULTS: Compared with wild-type mice, Aid-/- B6 mice developed exacerbated HFDIO due to abundant levels of IgM. FMT from Aid-/- B6 to GF B6 mice promoted greater weight gain in recipient mice compared with FMT using wild-type mouse faecal microbiota. Obese youth with type 2 diabetes had more IgM-bound gut bacteria. Using the stools from the obese youth with type 2 diabetes for FMT to GF B6 mice, we observed that the gut microbiota promoted body weight gain and impaired glucose tolerance in the recipient GF B6 mice. Importantly, some clinical features of these obese young individuals were mirrored in the GF B6 mice following FMT. CONCLUSIONS/INTERPRETATION: Our results suggest that IgM-bound gut microbiota may play an important role in the immuno-pathogenesis of obesity and type 2 diabetes, and provide a novel link between IgM in obesity and type 2 diabetes in both mice and humans. DATA AVAILABILITY: The 16s rRNA sequencing datasets supporting the current study have been deposited in the NCBI SRA public repository ( https://www.ncbi.nlm.nih.gov/sra ; accession no. SAMN18796639).


Asunto(s)
Diabetes Mellitus Tipo 2 , Adolescente , Animales , Bacterias/genética , Niño , Dieta Alta en Grasa , Humanos , Inmunoglobulina M , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , ARN Ribosómico 16S/genética , Aumento de Peso
8.
J Physiol ; 600(12): 2919-2938, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551673

RESUMEN

In resistance arteries, endothelium-dependent hyperpolarization (EDH)-mediated vasodilatation is depressed in diabetes. We hypothesized that downregulation of KCa channel derived EDH reduces exercise-induced vasodilatation and blood flow redistribution in diabetes. To test this hypothesis, we evaluated vascular function in response to hindlimb muscle contraction, and the contribution of KCa channels in anaesthetised ZFDM, metabolic disease rats with type 2 diabetes. We also tested whether exercise training ameliorated the vascular response. Using in vivo microangiography, the hindlimb vasculature was visualized before and after rhythmic muscle contraction (0.5 s tetanus every 3 s, 20 times) evoked by sciatic nerve stimulation (40 Hz). Femoral blood flow of the contracting hindlimb was simultaneously measured by an ultrasonic flowmeter. The contribution of KCa channels was investigated in the presence and absence of apamin and charybdotoxin. We found that vascular and blood flow responses to muscle contraction were significantly impaired at the level of small artery segments in ZFDM fa/fa rats compared to its lean control fa/+ rats. The contribution of KCa channels was also smaller in fa/fa than in fa/+ rats. Low-intensity exercise training for 12 weeks in fa/fa rats demonstrated minor changes in the vascular and blood flow response to muscle contraction. However, the KCa-derived component in the response to muscle contraction was much greater in exercise trained than in sedentary fa/fa rats. These data suggest that exercise training increases the contribution of KCa channels among endothelium-dependent vasodilatory mechanisms to maintain vascular and blood flow responses to muscle contraction in this metabolic disease rat model. KEY POINTS: Microvascular dysfunction in type 2 diabetes impairs blood flow redistribution during exercise and limits the performance of skeletal muscle and may cause early fatigability. Endothelium-dependent hyperpolarization (EDH), which mediates vasodilatation in resistance arteries, is known to be depressed in animals with diabetes. Here, we report that low-intensity exercise training in ZFDM rats increased the KCa channel-derived component in the vasodilator responses to muscle contraction compared to that in sedentary rats, partly as a result of the increase in KCNN3 expression. These results suggest that low-intensity exercise training improves blood flow redistribution in contracting skeletal muscle in metabolic disease with diabetes via upregulation of EDH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Endotelio Vascular , Animales , Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/fisiología , Contracción Muscular , Ratas , Vasodilatación/fisiología , Vasodilatadores/farmacología
9.
Diabetes Metab Res Rev ; 38(1): e3480, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156143

RESUMEN

Latent autoimmune diabetes in adults (LADA) is an autoimmune disease that shares some genetic, immunological and clinical features with both type 1 diabetes and type 2 diabetes. Immune cells including CD4+ T cells, CD8+ T cells, B cells, macrophages and dendritic cells (DCs) have been detected in the pancreas of patients with LADA and a rat model of LADA. Therefore, similar to type 1 diabetes, the pathogenesis of LADA may be caused by interactions between islet ß-cells and innate and adaptive immune cells. However, the role of the immunity in the initiation and progression of LADA remains largely unknown. In this review, we have summarized the potential roles of innate immunity and immune-modulators in LADA development. Furthermore, we have examined the evidence and discussed potential innate immunological reasons for the slower development of LADA compared with type 1 diabetes. More in-depth mechanistic studies are needed to fully elucidate the roles of innate immune-associated genes, molecules and cells in their contributions to LADA pathogenesis. Undertaking these studies will greatly enhance the development of new strategies and optimization of current strategies for the diagnosis and treatment of the disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Autoinmune Latente del Adulto , Animales , Autoanticuerpos , Linfocitos T CD8-positivos/patología , Diabetes Mellitus Tipo 2/patología , Humanos , Inmunidad Innata , Ratas
10.
Pediatr Res ; 91(7): 1686-1694, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34294868

RESUMEN

BACKGROUND: Preterm infants are commonly supported with 4-8 cm H2O continuous positive airway pressures (CPAP), although higher CPAP levels may improve functional residual capacity (FRC). METHODS: Preterm rabbits delivered at 29/32 days (~26-28 weeks human) gestation received 0, 5, 8, 12, 15 cm H2O of CPAP or variable CPAP of 15 to 5 or 15 to 8 cm H2O (decreasing ~2 cm H2O/min) for up to 10 min after birth. RESULTS: FRC was lower in the 0 (6.8 (1.0-11.2) mL/kg) and 5 (10.1 (1.1-16.8) mL/kg) compared to the 15 (18.8 (10.9-22.4) mL/kg) cm H2O groups (p = 0.003). Fewer kittens achieved FRC > 15 mL/kg in the 0 (20%), compared to 8 (36%), 12 (60%) and 15 (73%) cm H2O groups (p = 0.008). While breathing rates were not different (p = 0.096), apnoea tended to occur more often with CPAP < 8 cm H2O (p = 0.185). CPAP belly and lung bulging rates were similar whereas pneumothoraces were rare. Lowering CPAP from 15 to 5, but not 15 to 8 cm H2O, decreased FRC and breathing rates. CONCLUSION: In all, 15 cm H2O of CPAP improved lung aeration and reduced apnoea, but did not increase the risk of lung over-expansion, pneumothorax or CPAP belly immediately after birth. FRC and breathing rates were maintained when CPAP was decreased to 8 cm H2O. IMPACT: Although preterm infants are commonly supported with 4-8 cm H2O CPAP at birth, preclinical studies have shown that higher PEEP levels improve lung aeration. In this study, CPAP levels of 15 cm H2O improved lung aeration and reduced apnoea in preterm rabbit kittens immediately after birth. In all, 15 cm H2O CPAP did not increase the risk of lung over-expansion (indicated by bulging between the ribs), pneumothorax, or CPAP belly. These results can be used when designing future studies on CPAP strategies for preterm infants in the delivery room.


Asunto(s)
Apnea , Neumotórax , Animales , Presión de las Vías Aéreas Positiva Contínua , Capacidad Residual Funcional , Humanos , Recién Nacido , Recien Nacido Prematuro , Conejos
11.
Circ Res ; 127(11): 1384-1400, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32907486

RESUMEN

RATIONALE: Diabetic heart disease (DHD) is a debilitating manifestation of type 2 diabetes mellitus. Exercise has been proposed as a potential therapy for DHD, although the effectiveness of exercise in preventing or reversing the progression of DHD remains controversial. Cardiac function is critically dependent on the preservation of coronary vascular function. OBJECTIVE: We aimed to elucidate the effectiveness and mechanisms by which exercise facilitates coronary and cardiac-protection during the onset and progression of DHD. METHODS AND RESULTS: Diabetic db/db and nondiabetic mice, with or without underlying cardiac dysfunction (16 and 8 weeks old, respectively) were subjected to either moderate-intensity exercise or high-intensity exercise for 8 weeks. Subsequently, synchrotron microangiography, immunohistochemistry, Western blot, and real-time polymerase chain reaction were used to assess time-dependent changes in cardiac and coronary structure and function associated with diabetes mellitus and exercise and determine whether these changes reflect the observed changes in cardiac-enriched and vascular-enriched microRNAs (miRNAs). We show that, if exercise is initiated from 8 weeks of age, both moderate-intensity exercise and high-intensity exercise prevented the onset of coronary and cardiac dysfunction, apoptosis, fibrosis, microvascular rarefaction, and disruption of miRNA signaling, as seen in the nonexercised diabetic mice. Conversely, the cardiovascular benefits of moderate-intensity exercise were absent if the exercise was initiated after the diabetic mice had already established cardiac dysfunction (ie, from 16 weeks of age). The experimental silencing or upregulation of miRNA-126 activity suggests the mechanism underpinning the cardiovascular benefits of exercise were mediated, at least in part, through tissue-specific miRNAs. CONCLUSIONS: Our findings provide the first experimental evidence for the critical importance of early exercise intervention in ameliorating the onset and progression of DHD. Our results also suggest that the beneficial effects of exercise are mediated through the normalization of cardiovascular-enriched miRNAs, which are dysregulated in DHD.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Cardiomiopatías Diabéticas/prevención & control , Terapia por Ejercicio , MicroARNs/metabolismo , Miocardio/metabolismo , Condicionamiento Físico Animal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Masculino , Ratones , MicroARNs/genética , Miocardio/patología , Carrera , Transducción de Señal , Factores de Tiempo , Función Ventricular Izquierda , Remodelación Ventricular
12.
Am J Physiol Heart Circ Physiol ; 320(3): H1021-H1036, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481696

RESUMEN

Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.


Asunto(s)
Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Sincrotrones , Vasodilatación , Disfunción Ventricular Derecha/diagnóstico por imagen , Animales , Antihipertensivos/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Endotelina/farmacología , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Indoles , Monocrotalina , Valor Predictivo de las Pruebas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Pirimidinas/farmacología , Pirroles , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología , Vasodilatación/efectos de los fármacos , Disfunción Ventricular Derecha/tratamiento farmacológico , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha , Remodelación Ventricular
13.
Cardiovasc Diabetol ; 20(1): 50, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618724

RESUMEN

BACKGROUND: Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS: Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS: Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION: We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.


Asunto(s)
Acetilcolina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/prevención & control , Glucosa/metabolismo , Ventrículos Cardíacos/metabolismo , Acetilcolinesterasa/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Proteínas Ligadas a GPI/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor Muscarínico M2/metabolismo , Simportadores/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
14.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33480422

RESUMEN

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Endotelio Vascular/efectos de los fármacos , Resistencia a la Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Angiografía Coronaria , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Masculino , Metoprolol/farmacología , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Cloruro de Sodio Dietético/administración & dosificación
15.
Exp Physiol ; 106(1): 212-221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003866

RESUMEN

NEW FINDINGS: What is the central question of this study? In heat-stressed individuals, does high-intensity interval exercise reduce tolerance to a simulated haemorrhagic challenge (lower body negative pressure, LBNP) relative to steady state exercise? What is the main finding and its importance? LBNP tolerance was lower in heat-stressed individuals following high-intensity interval exercise relative to steady state exercise. This was likely owing to the greater cardiovascular strain required to maintain arterial blood pressure prior to and early during LBNP following high-intensity interval exercise. These findings are of importance for individuals working in occupations in which combined heat stress and intense intermittent exercise are common and where the risk of haemorrhagic injury is increased. ABSTRACT: This study investigated whether tolerance to a simulated haemorrhagic challenge (lower body negative pressure, LBNP) was lower in heat-stressed individuals following high-intensity interval exercise relative to steady state exercise. Nine healthy participants completed two trials (Steady State and Interval). Participants cycled continuously at ∼38% (Steady State) or alternating between 10 and ∼88% (Interval) of the maximal power output whilst wearing a hot water perfused suit until core temperatures increased ∼1.4°C. Participants then underwent LBNP to pre-syncope. LBNP tolerance was quantified as cumulative stress index (CSI; mmHg min). Mean skin and core temperatures were elevated in both trials following exercise prior to LBNP (to 38.1 ± 0.6°C and 38.3 ± 0.2°C, respectively, both P < 0.001 relative to baseline) but not different between trials (both P > 0.05). In the Interval trial, heart rate was greater (122 ± 12 beats min-1 ) prior to LBNP, relative to the Steady State trial (107 ± 8 beats min-1 , P < 0.001) while mean arterial pressure was similarly reduced in both trials prior to LBNP (from baseline 89 ± 5 to 77 ± 7 mmHg; P = 0.001) and at pre-syncope (to 62 ± 9 mmHg, P < 0.001). CSI was lower in the Interval trial (280 ± 194 vs. 550 ± 234 mmHg min; P = 0.0085). In heat-stressed individuals, tolerance to a simulated haemorrhagic challenge is reduced following high-intensity interval exercise relative to steady state exercise.


Asunto(s)
Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/fisiopatología , Respuesta al Choque Térmico/fisiología , Hemorragia/fisiopatología , Adulto , Presión Arterial/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Presión Negativa de la Región Corporal Inferior/métodos , Masculino , Síncope/fisiopatología , Adulto Joven
16.
Clin Exp Pharmacol Physiol ; 48(12): 1685-1692, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411314

RESUMEN

Serotonin (5-HT) accumulates in the heart during myocardial ischaemia and induces deleterious effects on the cardiomyocytes. We aimed to investigate whether carrier-mediated 5-HT efflux contributed to the increase in interstitial 5-HT level during ischaemia. Using microdialysis technique applied to the heart of anaesthetised Wistar rats, myocardial interstitial concentration of 5-HT was measured by electro-chemical detection coupled with high-performance liquid chromatography (HPLC-ECD) while simultaneously various pharmacological agents, which create a similar condition to ischaemia, were locally administered by reverse-microdialysis. Sodium cyanide-induced chemical anoxia increased dialysate 5-HT concentration. A similar increase in dialysate 5-HT concentration was induced by ouabain, an inhibitor of sodium-potassium ATPase and reserpine, an inhibitor of vesicular monoamine transporter. Fluoxetine, a selective serotonin reuptake inhibitor raised the baseline level of 5-HT, and neither sodium cyanide nor the combination of ouabain and reserpine induced further increase in 5-HT in the presence of fluoxetine. The results indicate that reverse transport of 5-HT via SERT, which is caused by an impaired ion gradient, contributes to the rise in interstitial level of 5-HT during ischaemia suggesting carrier-mediated 5-HT efflux occurs in the heart in vivo.


Asunto(s)
Serotonina
17.
Immunology ; 161(4): 278-290, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33090484

RESUMEN

Circadian rhythms influence daily molecular oscillations in gene/protein expression and aspects of biology and physiology, including behaviour, body temperature and sleep-wake cycles. These circadian rhythms have been associated with a number of metabolic, immune and microbial changes that correlate with health and susceptibility to disease, including infection. While light is the main inducer of circadian rhythms, other factors, including the microbiota, can have important effects on peripheral rhythms. The microbiota have been of significant interest to many investigators over the past decade, with the development of molecular techniques to identify large numbers of species and their function. These studies have shown microbial associations with disease susceptibility, and some of these have demonstrated that alterations in microbiota cause disease. Microbial circadian oscillations impact host metabolism and immunity directly and indirectly. Interestingly, microbial oscillations also regulate host circadian rhythms, and the host circadian rhythms in turn modulate microbial composition. Thus, it is of considerable interest and importance to understand the crosstalk between circadian rhythms and microbiota and especially the microbial influences on the host. In this review, we aim to discuss the role of circadian microbial oscillations and how they influence host immunity. In addition, we discuss how host circadian rhythms can also modulate microbial rhythms. We also discuss potential connections between microbes and circadian rhythms and how these may be used therapeutically to maximize clinical success.


Asunto(s)
Relojes Circadianos/inmunología , Ritmo Circadiano/inmunología , Microbioma Gastrointestinal/inmunología , Animales , Susceptibilidad a Enfermedades , Disbiosis , Humanos , Sistema Inmunológico , Inmunidad , Receptores de Reconocimiento de Patrones/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R517-R525, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32903042

RESUMEN

Vagal nerve stimulation (VNS) has been explored as a potential therapy for chronic heart failure. The contribution of the afferent pathway to myocardial interstitial acetylcholine (ACh) release during VNS has yet to be clarified. In seven anesthetized Wistar-Kyoto rats, we implanted microdialysis probes in the left ventricular free wall and measured the myocardial interstitial ACh release during right VNS with the following combinations of stimulation frequency (F in Hz) and voltage readout (V in volts): F0V0 (no stimulation), F5V3, F20V3, F5V10, and F20V10. F5V3 did not affect the ACh level. F20V3, F5V10, and F20V10 increased the ACh level to 2.83 ± 0.47 (P < 0.01), 4.31 ± 1.09 (P < 0.001), and 4.33 ± 0.82 (P < 0.001) nM, respectively, compared with F0V0 (1.76 ± 0.22 nM). After right vagal afferent transection (rVAX), F20V3 and F20V10 increased the ACh level to 2.90 ± 0.53 (P < 0.001) and 3.48 ± 0.63 (P < 0.001) nM, respectively, compared with F0V0 (1.61 ± 0.19 nM), but F5V10 did not (2.11 ± 0.24 nM). The ratio of the ACh levels after rVAX relative to before was significantly <100% in F5V10 (59.4 ± 8.7%) but not in F20V3 (102.0 ± 8.7%). These results suggest that high-frequency and low-voltage stimulation (F20V3) evoked the ACh release mainly via direct activation of the vagal efferent pathway. By contrast, low-frequency and high-voltage stimulation (F5V10) evoked the ACh release in a manner dependent on the vagal afferent pathway.


Asunto(s)
Acetilcolina/metabolismo , Vías Aferentes/fisiología , Miocardio/metabolismo , Estimulación del Nervio Vago , Animales , Hemodinámica , Masculino , Fibras Nerviosas Mielínicas/fisiología
19.
Cardiovasc Diabetol ; 19(1): 24, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093680

RESUMEN

BACKGROUND: Obesity, hypertension and prediabetes contribute greatly to coronary artery disease, heart failure and vascular events, and are the leading cause of mortality and morbidity in developed societies. Salt sensitivity exacerbates endothelial dysfunction. Herein, we investigated the effect of chronic glucagon like peptide-1 (GLP-1) receptor activation on the coronary microcirculation and cardiac remodeling in Zucker rats on a high-salt diet (6% NaCl). METHODS: Eight-week old Zucker lean (+/+) and obese (fa/fa) rats were treated with vehicle or liraglutide (LIRA) (0.1 mg/kg/day, s.c.) for 8 weeks. Systolic blood pressure (SBP) was measured using tail-cuff method in conscious rats. Myocardial function was assessed by echocardiography. Synchrotron contrast microangiography was then used to investigate coronary arterial vessel function (vessels 50-350 µm internal diameter) in vivo in anesthetized rats. Myocardial gene and protein expression levels of vasoactive factors, inflammatory, oxidative stress and remodeling markers were determined by real-time PCR and Western blotting. RESULTS: We found that in comparison to the vehicle-treated fa/fa rats, rats treated with LIRA showed significant improvement in acetylcholine-mediated vasodilation in the small arteries and arterioles (< 150 µm diameter). Neither soluble guanylyl cyclase or endothelial NO synthase (eNOS) mRNA levels or total eNOS protein expression in the myocardium were significantly altered by LIRA. However, LIRA downregulated Nox-1 mRNA (p = 0.030) and reduced ET-1 protein (p = 0.044) expression. LIRA significantly attenuated the expressions of proinflammatory and profibrotic associated biomarkers (NF-κB, CD68, IL-1ß, TGF-ß1, osteopontin) and nitrotyrosine in comparison to fa/fa-Veh rats, but did not attenuate perivascular fibrosis appreciably. CONCLUSIONS: In a rat model of metabolic syndrome, chronic LIRA treatment improved the capacity for NO-mediated dilation throughout the coronary macro and microcirculations and partially normalized myocardial remodeling independent of changes in body mass or blood glucose.


Asunto(s)
Enfermedad de la Arteria Coronaria/prevención & control , Circulación Coronaria/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipoglucemiantes/farmacología , Incretinas/farmacología , Resistencia a la Insulina , Liraglutida/farmacología , Microcirculación/efectos de los fármacos , Obesidad/tratamiento farmacológico , Animales , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipertensión/etiología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Ratas Zucker , Cloruro de Sodio Dietético , Remodelación Ventricular/efectos de los fármacos
20.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31669609

RESUMEN

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Asunto(s)
Diástole , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Inflamación/patología , Miocitos Cardíacos/patología , Estrés Oxidativo , Estado Prediabético/patología , Estado Prediabético/fisiopatología , Citoesqueleto de Actina/metabolismo , Animales , Conectina/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Guanilato Ciclasa/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Peróxido de Hidrógeno/metabolismo , Masculino , Complejos Multienzimáticos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miosinas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Péptidos/metabolismo , Fosforilación , Ratas Wistar , Superóxidos/metabolismo , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA