Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696761

RESUMEN

SUMMARY: PlasCAT (Plasmid Cloud Assembly Tool) is an easy-to-use cloud-based bioinformatics tool that enables de novo plasmid sequence assembly from raw sequencing data. Nontechnical users can now assemble sequences from long reads and short reads without ever touching a line of code. PlasCAT uses high-performance computing servers to reduce run times on assemblies and deliver results faster. AVAILABILITY AND IMPLEMENTATION: PlasCAT is freely available on the web at https://sequencing.genofab.com. The assembly pipeline source code and server code are available for download at https://bitbucket.org/genofabinc/workspace/projects/PLASCAT. Click the Cancel button to access the source code without authenticating. Web servers implemented in React.js and Python, with all major browsers supported.


Asunto(s)
Plásmidos , Programas Informáticos , Plásmidos/genética , Nube Computacional , Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Internet
2.
PLoS Comput Biol ; 20(2): e1011373, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324583

RESUMEN

We present the first complete stochastic model of vesicular stomatitis virus (VSV) intracellular replication. Previous models developed to capture VSV's intracellular replication have either been ODE-based or have not represented the complete replicative cycle, limiting our ability to understand the impact of the stochastic nature of early cellular infections on virion production between cells and how these dynamics change in response to mutations. Our model accurately predicts changes in mean virion production in gene-shuffled VSV variants and can capture the distribution of the number of viruses produced. This model has allowed us to enhance our understanding of intercellular variability in virion production, which appears to be influenced by the duration of the early phase of infection, and variation between variants, arising from balancing the time the genome spends in the active state, the speed of incorporating new genomes into virions, and the production of viral components. Being a stochastic model, we can also assess other effects of mutations beyond just the mean number of virions produced, including the probability of aborted infections and the standard deviation of the number of virions produced. Our model provides a biologically interpretable framework for studying the stochastic nature of VSV replication, shedding light on the mechanisms underlying variation in virion production. In the future, this model could enable the design of more complex viral phenotypes when attenuating VSV, moving beyond solely considering the mean number of virions produced.


Asunto(s)
Estomatitis Vesicular , Animales , Estomatitis Vesicular/genética , Virus de la Estomatitis Vesicular Indiana/genética , Virión/genética , Replicación Viral/genética , Mutación
3.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060459

RESUMEN

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

4.
Biol Lett ; 19(1): 20220457, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628964

RESUMEN

In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.


Asunto(s)
Isópodos , Wolbachia , Masculino , Animales , Femenino , Isópodos/genética , Razón de Masculinidad , Haplotipos , Europa (Continente) , Japón , Wolbachia/genética
5.
J Invertebr Pathol ; 197: 107893, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754115

RESUMEN

Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.


Asunto(s)
Simbiosis , Wolbachia , Femenino , Animales , Bacterias
6.
Mol Biol Evol ; 38(9): 3512-3530, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34191026

RESUMEN

The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.


Asunto(s)
Artrópodos , Virus , Animales , Artrópodos/genética , Baculoviridae/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Insectos/genética , Virus/genética
7.
PLoS Biol ; 17(10): e3000438, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600190

RESUMEN

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.


Asunto(s)
Isópodos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Simbiosis/genética , Wolbachia/fisiología , Alelos , Animales , Femenino , Genotipo , Homocigoto , Isópodos/microbiología , Masculino , Modelos Genéticos , Carácter Cuantitativo Heredable , Razón de Masculinidad
8.
Nucleic Acids Res ; 48(18): e106, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32890398

RESUMEN

Plasmids are a foundational tool for basic and applied research across all subfields of biology. Increasingly, researchers in synthetic biology are relying on and developing massive libraries of plasmids as vectors for directed evolution, combinatorial gene circuit tests, and for CRISPR multiplexing. Verification of plasmid sequences following synthesis is a crucial quality control step that creates a bottleneck in plasmid fabrication workflows. Crucially, researchers often elect to forego the cumbersome verification step, potentially leading to reproducibility and-depending on the application-security issues. In order to facilitate plasmid verification to improve the quality and reproducibility of life science research, we developed a fast, simple, and open source pipeline for assembly and verification of plasmid sequences from Illumina reads. We demonstrate that our pipeline, which relies on de novo assembly, can also be used to detect contaminating sequences in plasmid samples. In addition to presenting our pipeline, we discuss the role for verification and quality control in the increasingly complex life science workflows ushered in by synthetic biology.


Asunto(s)
Bases de Datos Genéticas , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Composición de Base , Secuencia de Bases , Escherichia coli/genética
9.
PLoS Genet ; 15(2): e1007965, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707693

RESUMEN

More than any other genome components, Transposable Elements (TEs) have the capacity to move across species barriers through Horizontal Transfer (HT), with substantial evolutionary consequences. Previous large-scale surveys, based on full-genomes comparisons, have revealed the transposition mode as an important predictor of HT rates variation across TE superfamilies. However, host biology could represent another major explanatory factor, one that needs to be investigated through extensive taxonomic sampling. Here we test this hypothesis using a field collection of 460 arthropod species from Tahiti and surrounding islands. Through targeted massive parallel sequencing, we uncover patterns of HT in three widely-distributed TE superfamilies with contrasted modes of transposition. In line with earlier findings, the DNA transposons under study (TC1-Mariner) were found to transfer horizontally at the highest frequency, closely followed by the LTR superfamily (Copia), in contrast with the non-LTR superfamily (Jockey), that mostly diversifies through vertical inheritance and persists longer within genomes. Strikingly, across all superfamilies, we observe a marked excess of HTs in Lepidoptera, an insect order that also commonly hosts baculoviruses, known for their ability to transport host TEs. These results turn the spotlight on baculoviruses as major potential vectors of TEs in arthropods, and further emphasize the importance of non-vertical TE inheritance in genome evolution.


Asunto(s)
Artrópodos/genética , Elementos Transponibles de ADN , Lepidópteros/genética , Animales , Artrópodos/clasificación , Baculoviridae/genética , Evolución Molecular , Transferencia de Gen Horizontal , Variación Genética , Genoma de los Insectos , Lepidópteros/clasificación , Lepidópteros/virología , Modelos Genéticos , Filogenia , Polinesia
10.
Annu Rev Entomol ; 66: 355-372, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32931312

RESUMEN

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN , Insectos/genética , Animales , Genoma de los Insectos
11.
Mol Biol Evol ; 36(4): 727-741, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668787

RESUMEN

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.


Asunto(s)
Evolución Biológica , Genoma , Isópodos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Wolbachia/genética
12.
Bioessays ; 40(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29283188

RESUMEN

Whoever compares the genomes of distantly related species might find aberrantly high sequence similarity at certain loci. Such anomaly can only be explained by genetic material being transferred through other means than reproduction, that is, a horizontal transfer (HT). Between multicellular organisms, the transferred material will likely turn out to be a transposable element (TE). Because TEs can move between loci and invade chromosomes by replicating themselves, HT of TEs (HTT) profoundly impacts genome evolution. Yet, very few studies have quantified HTT at large taxonomic scales. Indeed, this task currently faces difficulties that range from the variable quality of available genome sequences to limitations of analytical procedures, some of which have been overlooked. Here we review the many challenges that an extensive analysis of HTT must overcome, we expose biases and limits of current methods, suggest solutions or workarounds, and reflect upon approaches that could be developed to better quantify this phenomenon.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Animales , Genoma , Análisis de Secuencia/métodos
13.
Proc Natl Acad Sci U S A ; 114(18): 4721-4726, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416702

RESUMEN

Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Transferencia de Gen Horizontal , Genoma de los Insectos , Insectos/genética , Animales
14.
Curr Genet ; 65(2): 307-327, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30255296

RESUMEN

The ease of performing both forward and reverse genetics in Saccharomyces cerevisiae, along with its stable haploid state and short generation times, has made this budding yeast the consummate model eukaryote for genetics. The major advantage of using budding yeast for reverse genetics is this organism's highly efficient homology-directed repair, allowing for precise genome editing simply by introducing DNA with homology to the chromosomal target. Although plasmid- and PCR-based genome editing tools are quite efficient, they depend on rare spontaneous DNA breaks near the target sequence. Consequently, they can generate only one genomic edit at a time, and the edit must be associated with a selectable marker. However, CRISPR/Cas technology is efficient enough to permit markerless and multiplexed edits in a single step. These features have made CRISPR/Cas popular for yeast strain engineering in synthetic biology and metabolic engineering applications, but it has not been widely employed for genetic screens. In this review, we critically examine different methods to generate multi-mutant strains in systematic genetic interaction screens and discuss the potential of CRISPR/Cas to supplement or improve on these methods.


Asunto(s)
Sistemas CRISPR-Cas , Genoma Fúngico , Genómica/métodos , Levaduras/genética , Diploidia , Edición Génica , Biblioteca de Genes , Ingeniería Genética/métodos , Pruebas Genéticas/métodos , Mutación , Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas
15.
Bioinformatics ; 34(13): 2237-2244, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29432533

RESUMEN

Motivation: Mathematical models of cellular processes can systematically predict the phenotypes of novel combinations of multi-gene mutations. Searching for informative predictions and prioritizing them for experimental validation is challenging since the number of possible combinations grows exponentially in the number of mutations. Moreover, keeping track of the crosses needed to make new mutants and planning sequences of experiments is unmanageable when the experimenter is deluged by hundreds of potentially informative predictions to test. Results: We present CrossPlan, a novel methodology for systematically planning genetic crosses to make a set of target mutants from a set of source mutants. We base our approach on a generic experimental workflow used in performing genetic crosses in budding yeast. We prove that the CrossPlan problem is NP-complete. We develop an integer-linear-program (ILP) to maximize the number of target mutants that we can make under certain experimental constraints. We apply our method to a comprehensive mathematical model of the protein regulatory network controlling cell division in budding yeast. We also extend our solution to incorporate other experimental conditions such as a delay factor that decides the availability of a mutant and genetic markers to confirm gene deletions. The experimental flow that underlies our work is quite generic and our ILP-based algorithm is easy to modify. Hence, our framework should be relevant in plant and animal systems as well. Availability and implementation: CrossPlan code is freely available under GNU General Public Licence v3.0 at https://github.com/Murali-group/crossplan. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Cruzamientos Genéticos , Modelos Teóricos , Mutación , Programación Lineal , Programas Informáticos , Algoritmos , División Celular/genética , Redes Reguladoras de Genes , Modelos Biológicos , Saccharomycetales/genética
16.
PLoS Genet ; 12(2): e1005838, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26829124

RESUMEN

Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.


Asunto(s)
Baculoviridae/genética , Interacciones Huésped-Patógeno/genética , Mariposas Nocturnas/genética , Mariposas Nocturnas/virología , Animales , Secuencia de Bases , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal , Genoma Viral , Patrón de Herencia/genética , Motivos de Nucleótidos/genética , Análisis de Secuencia de ADN
17.
Bioinformatics ; 33(19): 3134-3136, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957495

RESUMEN

SUMMARY: Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for sharing networks and visualizations. We present GraphSpace, a web-based platform that fosters team science by allowing collaborating research groups to easily store, interact with, layout and share networks. AVAILABILITY AND IMPLEMENTATION: Anyone can upload and share networks at http://graphspace.org. In addition, the GraphSpace code is available at http://github.com/Murali-group/graphspace if a user wants to run his or her own server. CONTACT: murali@cs.vt.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Biología de Sistemas/métodos , Algoritmos , Biología Computacional , Comunicación Interdisciplinaria
18.
Mol Ecol ; 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30010213

RESUMEN

Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation. Here, we characterized genomewide polymorphisms in three pea aphid races specialized on alfalfa, clover and pea crops, respectively, which we sequenced in pools (poolseq). Using a model-based approach that explicitly accounts for selection, we identified 392 genomic hotspots of differentiation spanning 47.3 Mb and 2,484 genes (respectively, 9.12% of the genome size and 8.10% of its genes). Most of these highly differentiated regions were located on the autosomes, and overall differentiation was weaker on the X chromosome. Within these hotspots, high levels of absolute divergence between races suggest that these regions experienced less gene flow than the rest of the genome, most likely by contributing to reproductive isolation. Moreover, population-specific analyses showed evidence of selection in every host race, depending on the hotspot considered. These hotspots were significantly enriched for candidate gene categories that control host-plant selection and use. These genes encode 48 salivary proteins, 14 gustatory receptors, 10 odorant receptors, five P450 cytochromes and one chemosensory protein, which represent promising candidates for the genetic basis of host-plant specialization and ecological isolation in the pea aphid complex. Altogether, our findings open new research directions towards functional studies, for validating the role of these genes on adaptive phenotypes.

19.
PLoS Comput Biol ; 12(12): e1005230, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27935947

RESUMEN

The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.


Asunto(s)
Ciclo Celular/fisiología , Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Mutación , Fenotipo , Procesos Estocásticos
20.
Nucleic Acids Res ; 43(10): 4823-32, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25925571

RESUMEN

Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of ∼2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Biblioteca de Genes , Plásmidos/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA