Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(3): e1010109, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35286299

RESUMEN

ARP/ASCL transcription factors are key determinants of cell fate specification in a wide variety of tissues, coordinating the acquisition of generic cell fates and of specific subtype identities. How these factors, recognizing highly similar DNA motifs, display specific activities, is not yet fully understood. To address this issue, we overexpressed different ARP/ASCL factors in zebrafish ascl1a-/- mutant embryos to determine which ones are able to rescue the intestinal secretory lineage. We found that Ascl1a/b, Atoh1a/b and Neurod1 factors are all able to trigger the first step of the secretory regulatory cascade but distinct secretory cells are induced by these factors. Indeed, Neurod1 rescues the enteroendocrine lineage while Ascl1a/b and Atoh1a/b rescue the goblet cells. Gain-of-function experiments with Ascl1a/Neurod1 chimeric proteins revealed that the functional divergence is encoded by a 19-aa ultra-conserved element (UCE), present in all Neurod members but absent in the other ARP/ASCL proteins. Importantly, inserting the UCE into the Ascl1a protein reverses the rescuing capacity of this Ascl1a chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This novel domain acts indeed as a goblet cell fate repressor that inhibits gfi1aa expression, known to be important for goblet cell differentiation. Deleting the UCE domain of the endogenous Neurod1 protein leads to an increase in the number of goblet cells concomitant with a reduction of the enteroendocrine cells, phenotype also observed in the neurod1 null mutant. This highlights the crucial function of the UCE domain for NeuroD1 activity in the intestine. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates.


Asunto(s)
Células Caliciformes , Pez Cebra , Animales , Diferenciación Celular/genética , Células Caliciformes/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Nature ; 558(7711): 605-609, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925953

RESUMEN

Reprogramming of mRNA translation has a key role in cancer development and drug resistance 1 . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation2,3. Here we show, in humans, that the enzymes that catalyse modifications of wobble uridine 34 (U34) tRNA (U34 enzymes) are key players of the protein synthesis rewiring that is induced by the transformation driven by the BRAF V600E oncogene and by resistance to targeted therapy in melanoma. We show that BRAF V600E -expressing melanoma cells are dependent on U34 enzymes for survival, and that concurrent inhibition of MAPK signalling and ELP3 or CTU1 and/or CTU2 synergizes to kill melanoma cells. Activation of the PI3K signalling pathway, one of the most common mechanisms of acquired resistance to MAPK therapeutic agents, markedly increases the expression of U34 enzymes. Mechanistically, U34 enzymes promote glycolysis in melanoma cells through the direct, codon-dependent, regulation of the translation of HIF1A mRNA and the maintenance of high levels of HIF1α protein. Therefore, the acquired resistance to anti-BRAF therapy is associated with high levels of U34 enzymes and HIF1α. Together, these results demonstrate that U34 enzymes promote the survival and resistance to therapy of melanoma cells by regulating specific mRNA translation.


Asunto(s)
Codón/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Biosíntesis de Proteínas , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Codón/efectos de los fármacos , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Melanoma/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Factores de Elongación Transcripcional , Uridina/química , Uridina/genética , Uridina/metabolismo , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Pez Cebra/genética
4.
BMC Biol ; 18(1): 109, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867764

RESUMEN

BACKGROUND: Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS: RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION: We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.


Asunto(s)
Células Endocrinas/metabolismo , Regulación de la Expresión Génica , Intestinos/fisiología , Factor de Transcripción PAX6/genética , Páncreas/metabolismo , Transcriptoma , Pez Cebra/genética , Animales , Factor de Transcripción PAX6/metabolismo , Pez Cebra/metabolismo
5.
Wound Repair Regen ; 26(2): 238-244, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29663654

RESUMEN

The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.


Asunto(s)
Metronidazol/metabolismo , Nitrofuranos/metabolismo , Nitrorreductasas/metabolismo , Regeneración/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Metronidazol/farmacología , Modelos Animales , Nitrofuranos/farmacología , Nitrorreductasas/genética , Regeneración/efectos de los fármacos
6.
BMC Biol ; 15(1): 21, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327131

RESUMEN

BACKGROUND: Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS: In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION: This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes Reguladores , Páncreas/citología , Páncreas/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Animales , Diferenciación Celular/genética , Separación Celular , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Mutación/genética , Análisis de Componente Principal , Especificidad de la Especie , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
7.
Angiogenesis ; 19(1): 53-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446156

RESUMEN

The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3(-/-)) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3(+/-) mice were viable and fertile, but their intercrosses demonstrated lethality of Adamts3(-/-) embryos after 15 days of gestation. Procollagens I, II and III processing was unaffected in these embryos. However, a massive lymphedema caused by the lack of lymphatics development, an abnormal blood vessel structure in the placenta and a progressive liver destruction were observed. These phenotypes are most probably linked to dysregulation of the VEGF-C pathways. This study is the first demonstration that an aminoprocollagen peptidase is crucial for developmental processes independently of its primary role in collagen biology and has physiological functions potentially involved in several human diseases related to angiogenesis and lymphangiogenesis.


Asunto(s)
Proteínas ADAM/metabolismo , Embrión de Mamíferos/metabolismo , Linfangiogénesis , Neovascularización Fisiológica , Placenta/irrigación sanguínea , Proteínas ADAM/deficiencia , Animales , Vasos Sanguíneos/patología , Cartílago/patología , Colágeno/metabolismo , Edema/patología , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Inmunohistoquímica , Hígado/embriología , Hígado/patología , Ratones , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Placenta/patología , Embarazo , Procesamiento Proteico-Postraduccional , Piel/patología , Factor C de Crecimiento Endotelial Vascular/metabolismo
8.
J Appl Toxicol ; 36(9): 1194-206, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26946349

RESUMEN

Zebrafish phenotypic assays have shown promise to assess human hepatotoxicity, though scoring of liver morphology remains subjective and difficult to standardize. Liver toxicity in zebrafish larvae at 5 days was assessed using gene expression as the biomarker approach, complementary to phenotypic analysis and analytical data on compound uptake. This approach aimed to contribute to improved hepatotoxicity prediction, with the goal of identifying biomarker(s) as a step towards the development of transgenic models for prioritization. Morphological effects of hepatotoxic compounds (acetaminophen, amiodarone, coumarin, methapyrilene and myclobutanil) and saccharin as the negative control were assessed after exposure in zebrafish larvae. The hepatotoxic compounds induced the expected zebrafish liver degeneration or changes in size, whereas saccharin did not have any phenotypic adverse effect. Analytical methods based on liquid chromatography-mass spectrometry were optimized to measure stability of selected compounds in exposure medium and internal concentration in larvae. All compounds were stable, except amiodarone for which precipitation was observed. There was a wide variation between the levels of compound in the zebrafish larvae with a higher uptake of amiodarone, methapyrilene and myclobutanil. Detection of hepatocyte markers (CP, CYP3A65, GC and TF) was accomplished by in situ hybridization of larvae to coumarin and myclobutanil and confirmed by real-time reverse transcription-quantitative polymerase chain reaction. Experiments showed decreased expression of all markers. Next, other liver-specific biomarkers (i.e. FABP10a and NR1H4) and apoptosis (i.e. CASP-3 A and TP53) or cytochrome P450-related (CYP2K19) and oxidoreductase activity-related (ZGC163022) genes, were screened. Links between basic mechanisms of liver injury and results of biomarker responses are described. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Marcadores Genéticos , Hígado/efectos de los fármacos , Pez Cebra/genética , Acetaminofén/toxicidad , Amiodarona/toxicidad , Animales , Apoptosis/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cumarinas/toxicidad , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Hibridación in Situ , Larva/efectos de los fármacos , Larva/genética , Hígado/metabolismo , Masculino , Metapirileno/toxicidad , Nitrilos/toxicidad , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Fenotipo , Pruebas de Toxicidad , Transferrina/genética , Transferrina/metabolismo , Triazoles/toxicidad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
BMC Biol ; 13: 70, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329351

RESUMEN

BACKGROUND: In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. RESULTS: Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. CONCLUSIONS: We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies.


Asunto(s)
Células Secretoras de Insulina/fisiología , Células Madre Multipotentes/fisiología , Páncreas/fisiología , Regeneración/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/citología , Células Madre Multipotentes/citología , Páncreas/citología , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Pez Cebra , Proteínas de Pez Cebra/genética
10.
Hum Genet ; 134(11-12): 1163-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26337422

RESUMEN

Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease.


Asunto(s)
Variaciones en el Número de Copia de ADN , Duplicación de Gen , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Adulto , Animales , Animales Modificados Genéticamente , Encéfalo/embriología , Encéfalo/metabolismo , Estudios de Casos y Controles , Embrión no Mamífero , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Factores de Transcripción/metabolismo , Pez Cebra
11.
Dev Biol ; 376(2): 187-97, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23352790

RESUMEN

Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is essential to build the regulatory cascade controlling the differentiation of gastrointestinal progenitors into the different intestinal cell types. The expression of the ARP/ASCL factors was analyzed in zebrafish to identify, among all the ARP/ASCL factors found in the zebrafish genome, those expressed in the gastrointestinal tract. ascl1a was found to be the earliest factor detected in the intestine. Loss-of-function analyses using the pia/ascl1a mutant, revealed that ascl1a is crucial for the differentiation of all secretory cells. Furthermore, we identify a battery of transcription factors expressed during secretory cell differentiation and downstream of ascl1a. Finally, we show that the repression of secretory cell fate by Notch signaling is mediated by the inhibition of ascl1a expression. In conclusion, this work identifies Ascl1a as a key regulator of the secretory cell lineage in the zebrafish intestine, playing the same role as Atoh1 in the mouse intestine. This highlights the diversity in the ARP/ASCL family members acting as cell fate determinants downstream from Notch signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Células Enteroendocrinas/citología , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción , Pez Cebra
12.
J Cell Sci ; 125(Pt 5): 1129-40, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22399807

RESUMEN

Epiboly, the spreading and the thinning of the blastoderm to cover the yolk cell and close the blastopore in fish embryos, is central to the process of gastrulation. Despite its fundamental importance, little is known about the molecular mechanisms that control this coordinated cell movement. By a combination of knockdown studies and rescue experiments in zebrafish (Danio rerio), we show that epiboly relies on the molecular networking of syntenin with syndecan heparan sulphate proteoglycans, which act as co-receptors for adhesion molecules and growth factors. Furthermore, we show that the interaction of syntenin with phosphatidylinositol 4,5-bisphosphate (PIP2) and with the small GTPase ADP-ribosylation factor 6 (Arf6), which regulate the endocytic recycling of syndecan, is necessary for epiboly progression. Analysis of the earliest cellular defects suggests a role for syntenin in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues, but not in embryonic cell fate determination. This study identifies the importance of the syntenin-syndecan-PIP2-Arf6 complex for the progression of fish epiboly and establishes its key role in directional cell movements during early development.


Asunto(s)
Gastrulación/fisiología , Sindecanos/metabolismo , Sinteninas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Movimiento Celular/fisiología , Citoesqueleto/genética , Técnicas de Silenciamiento del Gen , Ratones , Datos de Secuencia Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinteninas/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
13.
BMC Biol ; 11: 78, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835295

RESUMEN

BACKGROUND: NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. RESULTS: We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. CONCLUSIONS: This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Endocrinas/citología , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Células Endocrinas/efectos de los fármacos , Células Endocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas HMGB/metabolismo , Ratones , Modelos Biológicos , Morfolinos/farmacología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Páncreas/efectos de los fármacos , Páncreas/embriología , Páncreas/metabolismo , Filogenia , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Dev Biol ; 365(1): 290-302, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22426004

RESUMEN

Differentiation of insulin producing beta-cells is a genetically well defined process that involves functions of various conserved transcription factors. Still, the transcriptional mechanisms underlying specification and determination of beta-cell fate are poorly defined. Here we provide the description of a beta-cell progenitor specific enhancer as a model to study initial steps of beta-cell differentiation. We show that evolutionary non-conserved upstream sequences of the zebrafish hb9 gene are required and sufficient for regulating expression in beta-cells prior to the onset of insulin expression. This enhancer contains binding sites for paired-box transcription factors and two E-boxes that in EMSA studies show interaction with Pax6b and NeuroD, respectively. We show that Pax6b is a potent activator of endodermal hb9 expression and that this activation depends on the beta-cell enhancer. Using genetic approaches we show that pax6b is crucial for maintenance but not induction of pancreatic hb9 transcription. As loss of Pax6b or Hb9 independently results in the loss of insulin expression, the data reveal a novel cross-talk between the two essential regulators of early beta-cell differentiation. While we find that the known pancreatic E-box binding proteins NeuroD and Ngn3 are not required for hb9 expression we also show that removal of both E-boxes selectively eliminates pancreatic specific reporter expression. The data provide evidence for an Ngn3 independent pathway of beta-cell specification that requires function of currently not specified E-box binding factors.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Células Secretoras de Insulina , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción PAX6 , Transducción de Señal , Células Madre/fisiología
15.
Dev Biol ; 366(2): 268-78, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22537488

RESUMEN

Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.


Asunto(s)
Hepatopáncreas/embriología , Islotes Pancreáticos/fisiología , Factor de Transcripción SOX9/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Factores de Crecimiento de Fibroblastos/fisiología , Hepatopáncreas/fisiología , Páncreas/citología , Páncreas/fisiología , Receptores Notch/fisiología , Regeneración , Transducción de Señal , Pez Cebra/fisiología
16.
Gastroenterology ; 142(1): 119-29, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21920465

RESUMEN

BACKGROUND & AIMS: Hepatocyte differentiation is controlled by liver-enriched transcription factors (LETFs). We investigated whether LETFs control microRNA expression during development and whether this control is required for hepatocyte differentiation. METHODS: Using in vivo DNA binding assays, we identified miR-122 as a direct target of the LETF hepatocyte nuclear factor (HNF) 6. The role and mechanisms of the HNF6-miR-122 gene cascade in hepatocyte differentiation were studied in vivo and in vitro by gain-of-function and loss-of-function experiments, using developing mice and zebrafish as model organisms. RESULTS: HNF6 and its paralog Onecut2 are strong transcriptional stimulators of miR-122 expression. Specific levels of miR-122 were required for proper progression of hepatocyte differentiation; miR-122 stimulated the expression of hepatocyte-specific genes and most LETFs, including HNF6. This indicates that HNF6 and miR-122 form a positive feedback loop. Stimulation of hepatocyte differentiation by miR-122 was lost in HNF6-null mice, revealing that a transcription factor can mediate microRNA function. All hepatocyte-specific genes whose expression was stimulated by miR-122 bound HNF6 in vivo, confirming their direct regulation by this factor. CONCLUSIONS: Hepatocyte differentiation is directed by a positive feedback loop that includes a transcription factor (HNF6) and a microRNA (miR-122) that are specifically expressed in liver. These findings could lead to methods to induce differentiation of hepatocytes in vitro and improve our understanding of liver cell dedifferentiation in pathologic conditions.


Asunto(s)
Diferenciación Celular , Hepatocitos/metabolismo , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Técnicas de Cultivo de Embriones , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 6 del Hepatocito/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transfección , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Development ; 137(2): 203-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20040487

RESUMEN

The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Winged-Helix/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Northern Blotting , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Células Endocrinas/citología , Células Endocrinas/metabolismo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ghrelina/metabolismo , Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Ratones , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Páncreas/citología , Páncreas/embriología , Páncreas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somatostatina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Winged-Helix/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
BMC Dev Biol ; 12: 37, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23244389

RESUMEN

BACKGROUND: Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies ß- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into ß-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS: pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating ß-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on ß- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of ß- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS: In zebrafish, pax4 is not required for the generation of the first ß- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in ß-cells differentiation appeared later in vertebrate evolution.


Asunto(s)
Embrión no Mamífero/citología , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Morfolinos/farmacología , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Páncreas/embriología , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/biosíntesis , Proteínas de Pez Cebra/biosíntesis
19.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060900

RESUMEN

Restoring damaged ß-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study ß-cells arising following destruction. We show that most new insulin cells differ from the original ß-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to ß-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in ß-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following ß-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-ß identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animales , Femenino , Masculino , Páncreas/citología , Somatostatina/metabolismo , Pez Cebra
20.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789323

RESUMEN

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Asunto(s)
Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Pez Cebra , Pez Cebra , Animales , Cromatina/genética , Genoma/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA