Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 23(1): 25, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419078

RESUMEN

BACKGROUND: The accurate detection of eyelid tumors is essential for effective treatment, but it can be challenging due to small and unevenly distributed lesions surrounded by irrelevant noise. Moreover, early symptoms of eyelid tumors are atypical, and some categories of eyelid tumors exhibit similar color and texture features, making it difficult to distinguish between benign and malignant eyelid tumors, particularly for ophthalmologists with limited clinical experience. METHODS: We propose a hybrid model, HM_ADET, for automatic detection of eyelid tumors, including YOLOv7_CNFG to locate eyelid tumors and vision transformer (ViT) to classify benign and malignant eyelid tumors. First, the ConvNeXt module with an inverted bottleneck layer in the backbone of YOLOv7_CNFG is employed to prevent information loss of small eyelid tumors. Then, the flexible rectified linear unit (FReLU) is applied to capture multi-scale features such as texture, edge, and shape, thereby improving the localization accuracy of eyelid tumors. In addition, considering the geometric center and area difference between the predicted box (PB) and the ground truth box (GT), the GIoU_loss was utilized to handle cases of eyelid tumors with varying shapes and irregular boundaries. Finally, the multi-head attention (MHA) module is applied in ViT to extract discriminative features of eyelid tumors for benign and malignant classification. RESULTS: Experimental results demonstrate that the HM_ADET model achieves excellent performance in the detection of eyelid tumors. In specific, YOLOv7_CNFG outperforms YOLOv7, with AP increasing from 0.763 to 0.893 on the internal test set and from 0.647 to 0.765 on the external test set. ViT achieves AUCs of 0.945 (95% CI 0.894-0.981) and 0.915 (95% CI 0.860-0.955) for the classification of benign and malignant tumors on the internal and external test sets, respectively. CONCLUSIONS: Our study provides a promising strategy for the automatic diagnosis of eyelid tumors, which could potentially improve patient outcomes and reduce healthcare costs.


Asunto(s)
Neoplasias de los Párpados , Humanos , Neoplasias de los Párpados/diagnóstico , Área Bajo la Curva , Costos de la Atención en Salud
2.
Mol Divers ; 18(3): 621-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24792224

RESUMEN

The term systems pharmacology describes a field of study that uses computational and experimental approaches to broaden the view of drug actions rooted in molecular interactions and advance the process of drug discovery. The aim of this work is to stick out the role that the systems pharmacology plays across the multi-target drug discovery from natural products for cardiovascular diseases (CVDs). Firstly, based on network pharmacology methods, we reconstructed the drug-target and target-target networks to determine the putative protein target set of multi-target drugs for CVDs treatment. Secondly, we reintegrated a compound dataset of natural products and then obtained a multi-target compounds subset by virtual-screening process. Thirdly, a drug-likeness evaluation was applied to find the ADME-favorable compounds in this subset. Finally, we conducted in vitro experiments to evaluate the reliability of the selected chemicals and targets. We found that four of the five randomly selected natural molecules can effectively act on the target set for CVDs, indicating the reasonability of our systems-based method. This strategy may serve as a new model for multi-target drug discovery of complex diseases.


Asunto(s)
Productos Biológicos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Animales , Productos Biológicos/uso terapéutico , Enfermedades Cardiovasculares/enzimología , Dominio Catalítico , Bases de Datos Farmacéuticas , Humanos , Concentración 50 Inhibidora , Modelos Moleculares
3.
NPJ Digit Med ; 5(1): 23, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236921

RESUMEN

Malignant eyelid tumors can invade adjacent structures and pose a threat to vision and even life. Early identification of malignant eyelid tumors is crucial to avoiding substantial morbidity and mortality. However, differentiating malignant eyelid tumors from benign ones can be challenging for primary care physicians and even some ophthalmologists. Here, based on 1,417 photographic images from 851 patients across three hospitals, we developed an artificial intelligence system using a faster region-based convolutional neural network and deep learning classification networks to automatically locate eyelid tumors and then distinguish between malignant and benign eyelid tumors. The system performed well in both internal and external test sets (AUCs ranged from 0.899 to 0.955). The performance of the system is comparable to that of a senior ophthalmologist, indicating that this system has the potential to be used at the screening stage for promoting the early detection and treatment of malignant eyelid tumors.

4.
Artículo en Inglés | MEDLINE | ID: mdl-24369484

RESUMEN

For thousands of years, tonic herbs have been successfully used all around the world to improve health, energy, and vitality. However, their underlying mechanisms of action in molecular/systems levels are still a mystery. In this work, two sets of tonic herbs, so called Qi-enriching herbs (QEH) and Blood-tonifying herbs (BTH) in TCM, were selected to elucidate why they can restore proper balance and harmony inside body, organ and energy system. Firstly, a pattern recognition model based on artificial neural network and discriminant analysis for assessing the molecular difference between QEH and BTH was developed. It is indicated that QEH compounds have high lipophilicity while BTH compounds possess high chemical reactivity. Secondly, a systematic investigation integrating ADME (absorption, distribution, metabolism, and excretion) prediction, target fishing and network analysis was performed and validated on these herbs to obtain the compound-target associations for reconstructing the biologically-meaningful networks. The results suggest QEH enhance physical strength, immune system and normal well-being, acting as adjuvant therapy for chronic disorders while BTH stimulate hematopoiesis function in body. As an emerging approach, the systems pharmacology model might facilitate to understand the mechanisms of action of the tonic herbs, which brings about new development for complementary and alternative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA