Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Mol Evol ; 92(1): 61-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324225

RESUMEN

Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.


Asunto(s)
Receptores Acoplados a Proteínas G , Rodopsina , Humanos , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Estructura Secundaria de Proteína , Mutación
2.
Nature ; 488(7411): 384-8, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22820255

RESUMEN

Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Ingeniería Genética/métodos , Sistema de Señalización de MAP Quinasas , Saccharomyces cerevisiae/enzimología , Linfocitos T/enzimología , Factores de Virulencia/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proliferación Celular , Células Cultivadas , Retroalimentación Fisiológica , Humanos , Interleucina-2/inmunología , Células Jurkat , Activación de Linfocitos/genética , Concentración Osmolar , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidad , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Virulencia/genética , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad
3.
PLoS Biol ; 12(12): e1002012, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25490747

RESUMEN

The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Evolución Molecular , Reordenamiento Génico , Genes del Tipo Sexual de los Hongos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
4.
Nat Genet ; 38(2): 168-74, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16415885

RESUMEN

New protein folds have emerged throughout evolution, but it remains unclear how a protein fold can evolve while maintaining its function, particularly when fold changes require several sequential gene rearrangements. Here, we explored hypothetical evolutionary pathways linking different topological families of the DNA-methyltransferase superfamily. These pathways entail successive gene rearrangements through a series of intermediates, all of which should be sufficiently active to maintain the organism's fitness. By means of directed evolution, and starting from HaeIII methyltransferase (M.HaeIII), we selected all the required intermediates along these paths (a duplicated fused gene and duplicates partially truncated at their 5' or 3' coding regions) that maintained function in vivo. These intermediates led to new functional genes that resembled natural methyltransferases from three known classes or that belonged to a new class first seen in our evolution experiments and subsequently identified in natural genomes. Our findings show that new protein topologies can evolve gradually through multistep gene rearrangements and provide new insights regarding these processes.


Asunto(s)
Evolución Molecular , Reordenamiento Génico/genética , Proteínas/química , Proteínas/genética , Secuencia de Aminoácidos , ADN-Citosina Metilasas/química , ADN-Citosina Metilasas/genética , Evolución Molecular Dirigida , Duplicación de Gen , Genoma Bacteriano , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Mutación Puntual/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión , Alineación de Secuencia
5.
J Exp Zool B Mol Dev Evol ; 322(7): 465-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25045153

RESUMEN

This is an exciting time to be an evolutionary biologist. Indeed, it is difficult to keep up with all the studies that fall under the broad category of "Evolution" since they span species, traits, and scales of organization. This special issue gives a flavor of exciting new approaches in evolutionary biology, but also emphasizes universal themes. The reviews contained here discuss important aspects of molecular evolution at multiple scales, from individual proteins to complex regulatory networks, as well as from unicellular organisms to macroscopic traits in animals. Though the model systems are diverse, the issues addressed are fundamental: the origin of evolutionary novelties, and the forces that drive them to fixation.


Asunto(s)
Evolución Molecular , Evolución Biológica , Modelos Biológicos
6.
J Exp Zool B Mol Dev Evol ; 322(2): 65-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24255009

RESUMEN

In a seminal paper entitled "Evolution and Tinkering," François Jacob affirmed that: "Novelties come from previously unseen association of old material. To create is to recombine" [Jacob F. (1977) Science 196:1161-1166]. In the 35 years that have passed since Jacob's insight, we have amassed enough data to actually shed light on many of the molecular mechanisms that enable evolution to create novelty by simply recombining what existed already. In this review, we will succinctly discuss the role that the recombination of protein domains has in the evolution of signaling networks, drawing from examples provided by diverse disciplines, including bioinformatics, systems and synthetic biology, and laboratory evolution.


Asunto(s)
Evolución Biológica , Proteoma/fisiología , Transducción de Señal/fisiología , Biología Computacional , Evolución Molecular Dirigida , Proteoma/genética , Transducción de Señal/genética , Biología de Sistemas
7.
Nat Med ; 27(7): 1212-1222, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34183837

RESUMEN

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity. We linked the activation of this engineered P2Y2 receptor to the secretion of the ATP-degrading enzyme apyrase, thus creating engineered yeast probiotics capable of sensing a pro-inflammatory molecule and generating a proportional self-regulated response aimed at its neutralization. These self-tunable yeast probiotics suppressed intestinal inflammation in mouse models of IBD, reducing intestinal fibrosis and dysbiosis with an efficacy similar to or higher than that of standard-of-care therapies usually associated with notable adverse events. By combining directed evolution and synthetic gene circuits, we developed a unique self-modulatory platform for the treatment of IBD and potentially other inflammation-driven pathologies.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apirasa/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Probióticos/uso terapéutico , Receptores Purinérgicos P2Y2/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Apirasa/genética , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Disbiosis/prevención & control , Femenino , Fibrosis/prevención & control , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Humanos , Enfermedades Inflamatorias del Intestino/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y2/genética , Saccharomyces cerevisiae/genética
8.
Nat Methods ; 4(12): 991-4, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18049465

RESUMEN

When generating novel tailor-made proteins, protein engineers routinely apply the principles of 'Darwinian' evolution. However, laboratory evolution of proteins also has the potential to test evolutionary theories and reproduce evolutionary scenarios, thus reconstructing putative protein intermediates and providing a glimpse of 'protein fossils'. This commentary describes research at the interface of applied and fundamental molecular evolution, and provides a personal view of how synergy between fundamental and applied experiments indicates novel and more efficient ways of generating new proteins in the laboratory.


Asunto(s)
Evolución Molecular Dirigida/métodos , Evolución Molecular Dirigida/tendencias , Evolución Molecular , Mutagénesis Sitio-Dirigida/métodos , Mutagénesis Sitio-Dirigida/tendencias , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/tendencias , Proteínas/genética
9.
Trends Biochem Sci ; 27(4): 183-90, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11943545

RESUMEN

Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection.


Asunto(s)
Fusión de Membrana/fisiología , Paramyxoviridae/fisiología , Secuencia de Aminoácidos , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/fisiología
10.
SLAS Discov ; 24(10): 969-977, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556794

RESUMEN

Retinitis pigmentosa (RP) is a degenerative retinal disease, often caused by mutations in the G-protein-coupled receptor rhodopsin. The majority of pathogenic rhodopsin mutations cause rhodopsin to misfold, including P23H, disrupting its crucial ability to respond to light. Previous screens to discover pharmacological chaperones of rhodopsin have primarily been based on rescuing rhodopsin trafficking and localization to the plasma membrane. Here, we present methods utilizing a yeast-based assay to screen for compounds that rescue the ability of rhodopsin to activate an associated downstream G-protein signaling cascade. We engineered a yeast strain in which human rhodopsin variants were genomically integrated, and were able to demonstrate functional coupling to the yeast mating pathway, leading to fluorescent protein expression. We confirmed that a known pharmacological chaperone, 9-cis retinal, could partially rescue light-dependent activation of a disease-associated rhodopsin mutation (P23H) expressed in yeast. These novel yeast strains were used to perform a phenotypic screen of 4280 compounds from the LOPAC1280 library and a peptidomimetic library, to discover novel pharmacological chaperones of rhodopsin. The fluorescence-based assay was robust in a 96-well format, with a Z' factor of 0.65 and a signal-to-background ratio of above 14. One compound was selected for additional analysis, but it did not appear to rescue rhodopsin function in yeast. The methods presented here are amenable to future screens of small-molecule libraries, as they are robust and cost-effective. We also discuss how these methods could be further modified or adapted to perform screens of more compounds in the future.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Bibliotecas de Moléculas Pequeñas , Levaduras/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Mutación , Receptores Acoplados a Proteínas G/genética , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/etiología , Rodopsina/genética , Transducción de Señal/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
11.
Genetics ; 211(2): 597-615, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30514708

RESUMEN

G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.


Asunto(s)
Mutación Missense , Retinitis Pigmentosa/genética , Rodopsina/metabolismo , Transducción de Señal , Línea Celular Tumoral , Genes del Tipo Sexual de los Hongos/genética , Humanos , Retinitis Pigmentosa/patología , Rodopsina/química , Rodopsina/genética , Saccharomyces cerevisiae
12.
G3 (Bethesda) ; 9(2): 535-547, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30573466

RESUMEN

Gram-negative bacterial pathogens inject type III secreted effectors (T3SEs) directly into host cells to promote pathogen fitness by manipulating host cellular processes. Despite their crucial role in promoting virulence, relatively few T3SEs have well-characterized enzymatic activities or host targets. This is in part due to functional redundancy within pathogen T3SE repertoires as well as the promiscuity of individual T3SEs that can have multiple host targets. To overcome these challenges, we generated and characterized a collection of yeast strains stably expressing 75 T3SE constructs from the plant pathogen Pseudomonas syringae This collection is devised to facilitate heterologous genetic screens in yeast, a non-host organism, to identify T3SEs that target conserved eukaryotic processes. Among 75 T3SEs tested, we identified 16 that inhibited yeast growth on rich media and eight that inhibited growth on stress-inducing media. We utilized Pathogenic Genetic Array (PGA) screens to identify potential host targets of P. syringae T3SEs. We focused on the acetyltransferase, HopZ1a, which interacts with plant tubulin and alters microtubule networks. To uncover putative HopZ1a host targets, we identified yeast genes with genetic interaction profiles most similar (i.e., congruent) to the PGA profile of HopZ1a and performed a functional enrichment analysis of these HopZ1a-congruent genes. We compared the congruence analyses above to previously described HopZ physical interaction datasets and identified kinesins as potential HopZ1a targets. Finally, we demonstrated that HopZ1a can target kinesins by acetylating the plant kinesins HINKEL and MKRP1, illustrating the utility of our T3SE-expressing yeast library to characterize T3SE functions.


Asunto(s)
Pseudomonas syringae/genética , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cinesinas/metabolismo , Unión Proteica , Pseudomonas syringae/patogenicidad , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo
13.
ACS Synth Biol ; 6(3): 446-454, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27935292

RESUMEN

The cellular concentrations of key components of signaling networks are tightly regulated, as deviations from their optimal ranges can have negative effects on signaling function. For example, overexpression of the yeast mating pathway mitogen-activated protein kinase (MAPK) Fus3 decreases pathway output, in part by sequestering individual components away from functional multiprotein complexes. Using a synthetic biology approach, we investigated potential mechanisms by which selection could compensate for a decrease in signaling activity caused by overexpression of Fus3. We overexpressed a library of random mutants of Fus3 and used cell sorting to select variants that rescued mating pathway activity. Our results uncovered that one remarkable way in which selection can compensate for protein overexpression is by introducing premature stop codons at permitted positions. Because of the low efficiency with which premature stop codons are read through, the resulting cellular concentration of active Fus3 returns to values within the range required for proper signaling. Our results underscore the importance of interpreting genotypic variation at the systems rather than at the individual gene level, as mutations can have opposite effects on protein and network function.


Asunto(s)
Codón de Terminación/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/genética , Proteínas Fúngicas/genética , Genotipo , Factor de Apareamiento/genética , Mutación/genética , Biología Sintética/métodos , Levaduras/genética
14.
Sci Rep ; 7(1): 16012, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167562

RESUMEN

G protein-coupled receptors (GPCRs) must discriminate between hundreds of related signal molecules. In order to better understand how GPCR specificity can arise from a common promiscuous ancestor, we used laboratory evolution to invert the specificity of the Saccharomyces cerevisiae mating receptor Ste2. This GPCR normally responds weakly to the pheromone of the related species Kluyveromyces lactis, though we previously showed that mutation N216S is sufficient to make this receptor promiscuous. Here, we found that three additional substitutions, A265T, Y266F and P290Q, can act together to confer a novel specificity for K. lactis pheromone. Unlike wild-type Ste2, this new variant does not rely on differences in binding affinity to discriminate against its non-preferred ligand. Instead, the mutation P290Q is critical for suppressing the efficacy of the native pheromone. These two alternative methods of ligand discrimination were mapped to specific amino acid positions on the peptide pheromones. Our work demonstrates that changes in ligand efficacy can drive changes in GPCR specificity, thus obviating the need for extensive binding pocket re-modeling.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mutación , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Methods Mol Biol ; 1596: 321-337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293896

RESUMEN

The ability to sense and process cues about changing environments is fundamental to life. Cells have evolved elaborate signaling pathways in order to respond to both internal and external stimuli appropriately. These pathways combine protein receptors, signal transducers, and effector genes in highly connected networks. The numerous interactions found between signaling proteins are essential to maintain strict regulation and produce a suitable cellular response. As a result, a signaling protein's activity in isolation can differ greatly from its activity in a native context. This is an important consideration when studying or engineering signaling pathways. Fortunately, the difficulty of studying network interactions is fading thanks to advances in library construction and cell sorting. In this chapter, we describe two methods for generating libraries of mutant proteins that exhibit altered network interactions: whole-gene point mutagenesis and domain shuffling. We then provide a protocol for using fluorescence-activated cell sorting to isolate interesting variants in live cells by focusing on the unicellular eukaryotic model organism Saccharomyces cerevisiae, using as an example recent work that we have done on its G protein-coupled receptor Ste2.


Asunto(s)
Transducción de Señal/genética , Clonación Molecular , Evolución Molecular Dirigida/métodos , Biblioteca de Genes , Mutagénesis/genética , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Nat Commun ; 7: 12344, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27487915

RESUMEN

All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease.


Asunto(s)
Evolución Molecular , Redes Reguladoras de Genes , Mutación/genética , Receptores del Factor de Conjugación/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Activadoras de GTPasa/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Feromonas/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Receptores del Factor de Conjugación/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biochim Biophys Acta ; 1614(1): 122-9, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12873773

RESUMEN

In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.


Asunto(s)
Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Fusión de Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Alineación de Secuencia , Virus/patogenicidad
18.
J Mol Biol ; 326(5): 1489-501, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12595260

RESUMEN

gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.


Asunto(s)
Membrana Celular/fisiología , Epítopos Inmunodominantes/química , Fusión de Membrana , Glicoproteínas de Membrana/química , Conformación Proteica , Proteínas de los Retroviridae/química , Virus de la Inmunodeficiencia de los Simios/metabolismo , Triptófano/química , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Cisteína/química , Fluorescencia , Calor , Humanos , Epítopos Inmunodominantes/metabolismo , Liposomas , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas de los Retroviridae/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie
19.
ACS Synth Biol ; 4(6): 714-22, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25587847

RESUMEN

Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Evolución Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Mutagénesis Sitio-Dirigida , Feromonas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
20.
ACS Synth Biol ; 1(6): 199-210, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23651203

RESUMEN

Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.


Asunto(s)
Evolución Molecular , Biología Sintética , Evolución Biológica , Evolución Molecular Dirigida , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA