Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
3.
JHEP Rep ; 6(5): 101056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38681863

RESUMEN

Background & Aims: Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods: Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results: Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 µm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions: Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications: The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.

4.
Transplant Rev (Orlando) ; 38(4): 100870, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38917621

RESUMEN

BACKGROUND: Pancreatic islet transplantation for type 1 diabetes mellitus (T1DM) is efficacious in supressing severe hypoglycaemic episodes (SHE) and restoring glycaemic regulation, which are both pivotal in increasing health-related quality of life (HRQoL). Therefore, a systematic assessment of reports detailing HRQoL outcomes is warranted to better understand the benefits of islet transplantation. To this end, we performed a systematic review of the literature to assess the impact of islet transplantation on HRQoL in individuals with T1DM, whether as a standalone procedure (ITA) or following renal transplantation (IAK). METHOD: All studies providing a quantitative assessment of HRQoL following ITA or IAK were included. Selected studies had to meet the following criteria: they had to (i) involve adult recipients of islet grafts for T1DM, (ii) use either generic or disease-specific QoL assessment tools, (iii) provide a comparative analysis of QoL metrics between the pre- and post-transplantation state or between the post-transplantation state and other pre-transplant patients or the general population. RESULTS: Seven studies that met the inclusion criteria provided data on 205 subjects. In the included studies, HRQoL was measured using both generic instruments, such as the 36-item Short Form Health Survey (SF-36) and the Health Status Questionnaire (HSQ) 2.0, and disease-specific instruments, such as the Diabetes Distress Scale (DDS), the Diabetes Quality of Life Questionnaire, and the Hypoglycaemia Fear Survey (HFS). These instruments cover physical, mental, social, or functional health dimensions. We found that pancreatic islet transplantation was associated with improvements in all HRQoL dimensions compared with the pre-transplant baseline. CONCLUSIONS: Our systematic review demonstrates that islet transplantation significantly enhances quality of life in individuals with T1DM who are experiencing SHE. To our knowledge, this is the most extensive systematic review conducted to date, evaluating the impact of islet transplantation on HRQoL.

5.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061220

RESUMEN

INTRODUCTION: Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS: We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS: Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS: In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.

6.
PLoS One ; 18(12): e0296265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38157359

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is one of the leading cause of hepatocellular carcinoma (HCC). This association is supported by the translocation of bacteria products into the portal system, which acts on the liver through the gut-liver axis. We hypothesize that portosystemic shunting can disrupt this relationship, and prevent NAFLD-associated HCC. METHODS: HCC carcinogenesis was tested in C57BL/6 mice fed a high-fat high-sucrose diet (HFD) and injected with diethylnitrosamine (DEN) at two weeks of age, and in double transgenic LAP-tTA and TRE-MYC (LAP-Myc) mice fed a methionine-choline-deficient diet. Portosystemic shunts were established by transposing the spleen to the sub-cutaneous tissue at eight weeks of age. RESULTS: Spleen transposition led to a consistent deviation of part of the portal flow and a significant decrease in portal pressure. It was associated with a decrease in the number of HCC in both models. This effect was supported by the presence of less severe liver steatosis after 40 weeks, and lower expression levels of liver fatty acid synthase. Also, shunted mice exhibited lower liver oxygen levels, a key factor in preventing HCC as confirmed by the development of less HCCs in mice with hepatic artery ligation. CONCLUSIONS: The present data show that portosystemic shunting prevents NAFLD-associated HCC, utilizing two independent mouse models. This effect is supported by the development of less steatosis, and a restored liver oxygen level. Portal pressure modulation and shunting deserve further exploration as potential prevention/treatment options for NAFLD and HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Carcinoma Hepatocelular/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Neoplasias Hepáticas/patología , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Oxígeno/metabolismo , Modelos Animales de Enfermedad
7.
Hepatobiliary Surg Nutr ; 13(4): 727-731, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39175738
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA