Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(17): 5099-5113, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349871

RESUMEN

Noctiluca scintillans is one of the most common harmful algal species and widely known due to its bioluminescence. In this study, the spatial distribution, seasonal variations, and long-term trends of N. scintillans blooms in China and the related drivers were analyzed and discussed. From 1933 to 2020, a total of 265 events of N. scintillans blooms were recorded in Chinese coastal waters, with a total duration of 1052 days. The first N. scintillans bloom occurred in Zhejiang in 1933, and only three events were recorded before 1980. From 1981 to 2020, N. scintillans caused harmful algal blooms (HABs) almost every year, both the average duration and the proportion of multiphase HABs showed an increasing trend. 1986-1992, 2002-2004, and 2009-2016 were the three peak periods with a frequency of no less than five events of N. scintillans blooms per year. In terms of spatial distribution, N. scintillans blooms spread from the Southeast China Sea to the Bohai Sea after 2000, Guangdong, Fujian, and Hebei were the three provinces with the highest numbers of recorded events of N. scintillans blooms. Moreover, 86.8% of the events of N. scintillans blooms occurred in spring (March, April, and May) and summer (June, July, and August). Among environmental factors, the dissolved inorganic phosphate, dissolved silicate and chemical oxygen demand were significantly correlated with the cell density of N. scintillans during N. scintillans blooms, and most of N. scintillans blooms were recorded in the temperature range of 18.0-25.0°C. Precipitation, hydrodynamics, water temperature, and food availability might be the main factors affecting the spatial-temporal distribution of N. scintillans blooms along the Chinese coast.


Asunto(s)
Dinoflagelados , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua , China
2.
Environ Res ; 235: 116568, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37422114

RESUMEN

The "larval starvation hypothesis" proposed that the growing frequency of Crown-of-Thorns Starfish (CoTS) outbreaks could be attributed to increased availability of phytoplankton. However, comprehensive field investigation on the living environment of CoTS larvae and the availability of phytoplankton are still lacking. A cruise was conducted in June 2022 in Xisha Islands, South China Sea, to study the interaction between environmental conditions and phytoplankton communities during CoTS outbreak period. The average concentrations of dissolved inorganic phosphorus (0.05 ± 0.01 µmol L-1), dissolved inorganic nitrogen (0.66 ± 0.8 µmol L-1) and chlorophyll a (0.05 ± 0.05 µg L-1) suggested that phytoplankton may be limited for CoTS larvae in Xisha Islands. Microscopic observation and high-throughput sequencing were used to study the composition and structure of the phytoplankton communities. Bacillariophyta predominated in phytoplankton communities with the highest abundance and species richness. 29 dominant species, including 4 species with size-range preferred by CoTS larvae, were identified in Xisha Islands. The diversity index of all stations indicated a species-rich and structure-stable phytoplankton community in Xisha Islands during the period of CoTS outbreak, which may contribute to CoTS outbreak. These findings revealed the structure of phytoplankton community and environmental factors in the study area during CoTS outbreak, providing the groundwork for future research into the causes and processes of CoTS outbreak.


Asunto(s)
Fitoplancton , Estrellas de Mar , Animales , Clorofila A , Islas , Brotes de Enfermedades , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA