Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 48(22): 5827-5830, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966729

RESUMEN

The in-plane electronic speckle pattern interferometry (ESPI), implemented in a Michelson stellar interferometer-like configuration, offers high sensitivity and dynamic measurement. However, its limited angle of view (AOV) remains a major challenge for the rotation angle determination of multiple objects. In this Letter, we analyze the main factors that influence the AOV of the in-plane ESPI and propose an "image transmitting" approach to enlarge the AOV. With the aid of a folded dual-telescope imaging system, we develop an AOV-unlimited interferometer that can determine multi-object rotation angles in real time. The practicability of the interferometer is demonstrated by the application in real-time measuring of the rotation angles of the disks within a 2D granular system.

2.
Appl Opt ; 61(2): 615-622, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200904

RESUMEN

Electronic speckle pattern interferometry (ESPI), a well-established technique for micro-deformation measurement, can be used to determine both in-plane and out-of-plane displacement components. Although many works in ESPI have been reported for three-dimensional (3D) displacement measurement, few works have focused on the simultaneous measurement of 3D deformation fields. Here we present an ESPI system that consists of three sub-interferometers for simultaneous measurement of all three displacement components and in-plane strain fields. A 3CCD color camera, a specially designed shifting stage, and three lasers with optimal wavelengths are used in this system. The lasers and 3CCD camera provide independent interferograms with different color signals, while the shifting stage allows the sub-interferometers to achieve simultaneous phase shifting. The results of color separation and experimental measurement demonstrate the utility of the system.

3.
Langmuir ; 36(19): 5176-5185, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32340458

RESUMEN

Accurate evaluation of the shell elastic modulus of microcapsules is of great significance to understanding their performance during production, processing, and applications. In this work, microcompression was employed to investigate the elastic behaviors of a single microcapsule. It was modeled as a microsphere with a core-shell structure compressed between two rigid plates. Based on the assumption that the contact pressure between the microsphere and plates obeys parabolic distribution, a microcompression method derived from the Reissner's theory and the modified Hertz contact theory was established to evaluate the shell elastic modulus. Applications were carried out on poly(methylmethacrylate) (PMMA) microcapsules containing n-octadecane. The average elastic modulus of PMMA shells measured by the proposed microcompression method agrees well with that of the bulk PMMA sample. Furthermore, the elastic modulus of PMMA shells was found to have size dependence on the diameter of the microcapsules. Finally, finite element models combined with the newly proposed method were constructed to accurately predict the microcompression behaviors of microcapsules with different sizes.

4.
Rev Sci Instrum ; 85(9): 095106, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25273771

RESUMEN

A novel torsion apparatus for micro-scale specimens is developed based on electromagnetism, in which a coil-magnet component is used for actuating and torque measuring. When the current gets through the coil, the torque, produced by Ampere force, can be easily measured by recording the current. A laser displacement sensor is applied to measure the rotation angle. The torque is calibrated using Sartorius BP211D balance. The calibration results demonstrate there is a perfect linear relationship between the torque and the current. The torque capacity is 4.0 × 10(-4) N m with noise-floor of less than 10(-8) N m. The rotation angle capacity is 60° with noise-floor of less than 0.02°. Two sets of copper wire specimens, with diameter of 100 µm and 140 µm, are tested using this apparatus. Experimental results, with good resolution and repeatability, successfully demonstrate the effectiveness of the torsion testing technique for micro-scale specimens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA