Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Crit Rev Immunol ; 44(2): 25-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305334

RESUMEN

Platelet hyperactivity represents a deleterious physiological phenomenon in diabetes mellitus (DM). This study aimed to explore the role of FUN14 domain containing 1 (FUNDC1) in platelet activation within the context of DM and to uncover relevant mechanisms, with a focus on mitophagy. A mouse model of DM was established by high-fat feeding and streptozotocin injection. Platelets isolated from whole blood were exposed to carbonyl cyanide-4-(trifluo-romethoxy)phenylhydrazone (FCCP) to induce mitophagy. The relative mRNA expression of FUNDC1 was detected by quantitative real-time PCR (qRT-PCR). Western blotting was employed to measure the protein levels of FUNDC1, the ratio of LC3-II toLC3-I, and cleaved caspase-3. Immunofluorescence and flow cytometry were performed to assess LC3-positive mitochondria and platelet activation factor CD62P, respectively. Additionally, serum levels of ß-thrombo-globulin (ß-TG) and platelet factor 4 (PF4)were measured by enzyme-linked immunosorbent assay. FUNDC1 expression was elevated in DM mice, and its silencing decreased the body weight and fasting blood glucose. Inhibition of FUNDC1 also significantly attenuated FCCP-induced platelet mitophagy, as evidenced by the down-regulation of the LC3-II/LC3-I ratio, up-regulation of Tomm20, and diminished presence of LC3-positive mitochondria. Moreover, platelet activation was noted in DM mice; this activation was mitigated upon FUNDC1 silencing, which was confirmed by the down-regulation of cleaved caspase-3 and CD62P as well as reductions in ß-TG and PF4 serum levels. Silencing of FUNDC1 inhibited platelet hyperactivity in DM by impeding mitophagy. As such, FUNDC1-midiated mitophagy may be a promising target for the treatment of DM and its associated cardiovascular complications related cardiovascular events.


Asunto(s)
Diabetes Mellitus , Proteínas de la Membrana , Proteínas Mitocondriales , Mitofagia , Animales , Ratones , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Caspasa 3 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Activación Plaquetaria
2.
Fish Physiol Biochem ; 47(2): 339-350, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33405062

RESUMEN

Paralichthys olivaceus is the kind of cold-water benthic marine fish. In the early stages of development, the symmetrical juveniles transform into an asymmetrical body shape through metamorphosis for adapting benthic life. After that, one side of the fish body is attached to the ground, and the eyes turn to the opposite side which is called ocular side. The body color also appears asymmetry. The skin on the ocular side is dark brown, and the skin on the blind side is white without pigmentation. Pseudo-albinism and hypermelanosis have been considered distinct body color disorders in flatfish. Pseudo-albinism and hypermelanosis in Paralichthys olivaceus are due to abnormal or uneven pigment distribution, due to the interaction of hereditary and environmental factors, rather than a single-nucleotide mutation of a specific gene. Here, we report three single-nucleotide polymorphisms (SNPs) responsible for both pseudo-albinism and hypermelanosis, which are located on two body color-related genes involved in melanogenesis-related pathways. c.2440C>A (P. V605I) and c.2271-96T>C are located on the Inositol 1,4,5-trisphosphate receptor type 2-like (ITPR2) (Gene ID: 109624047), they are located in exon 16 and the non-coding region, respectively, and c.2406C>A (P.H798N) is located in exon 13 of the adenylate cyclase type 6-like (AC6) gene(Gene ID: 109630770). ITPR2 and AC6 expression, which both participate in the thyroid hormone synthesis pathway associated with pseudo-albinism and hypermelanosis in P. olivaceus, were also investigated using qRT-PCR. In hypermelanotic fish, there were relatively higher levels of expression in ITPR2 and AC6 mRNA of hyper-pigmented skin of blind side than that of non-pigmented skin on the blind side and pigmented skin on the ocular side, while in pseudo-albino fish, expression level of ITPR2 and AC6 mRNA in pigmented skin of ocular side was significantly higher than that in non-pigmented skin both ocular and blind side. The results indicated that the expression of the two genes in abnormal parts of body color is positively correlated with pigmentation, suggesting that the influence of abnormal expression of two genes on the pigmentation in abnormal parts of body color deserves further study.


Asunto(s)
Proteínas de Peces/metabolismo , Lenguado/genética , Lenguado/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Peces/genética , Genotipo , Receptores de Inositol 1,4,5-Trifosfato/genética
3.
Heliyon ; 10(16): e36131, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253219

RESUMEN

Background: Type 2 diabetes mellitus (T2DM) presents a thrombotic environment, contributing to diabetic macroangiopathy and microangiopathy. In this study, the regulation of microthrombosis in T2DM was assessed. Methods: Platelets from T2DM patients and healthy controls were analyzed using 4D label-free proteomics and bioinformatics. The role of autophagy in T2DM platelet activation and conversion of platelet-derived angiotensinogen (AGT) was investigated. Results: The results showed that complement and coagulation cascades, platelet activation, metabolic pathways, endocytosis, autophagy, and other protein digestion-related pathways were enriched. The levels of the key protein AGT were increased in T2DM platelets. Chloroquine (CQ) inhibited ADP- or arachidonic acid (AA)-stimulated platelet aggregation and granule release in a dose-dependent manner, while the effects were less pronounced or even reversed for the proteasome inhibitor PYR-41 and the endocytosis inhibitor Pitstop 2. This indicated the dependence of platelet activation and the accompanying protein digestion on the autophagy-lysosome pathway. Mitophagy occurred in fresh T2DM platelets and ADP- or storage-stimulated platelets; mitophagy was inhibited by CQ. However, the mitophagy inhibitor Mdivi-1 failed to show effects similar to those of CQ. AGT, which could be transformed into ANGII in vitro by ADP-stimulated platelets, was upregulated in T2DM platelets and in MEG-01 cell-derived platelets cultured in a high-glucose medium. Finally, microthrombosis was alleviated as indicated by a reduction in the levels of red blood cells in the liver, spleen, heart, and kidney tissues of db/db mice treated with CQ or valsartan. Conclusion: In platelets, macroautophagy promotes protein digestion, subsequently facilitating platelet activation, ANGII-mediated vasoconstriction, and microthrombosis. Our results suggested that lysosome is a promising therapeutic target for antithrombotic treatment in T2DM.

4.
Front Neurol ; 14: 1191233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259645

RESUMEN

Background: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder. The lower atmospheric pressure and decreased oxygen levels of high-altitude areas can exacerbate the severity of OSAHS, but research into OSAHS in high-altitude areas remains limited. This study, from June 2015 to January 2020, involved 4,667 patients with suspected OSAHS and 38 healthy volunteers. The non-OSAHS group (AHI <5/h) had 395 patients, while the larger OSAHS group (AHI ≥5/h) comprised 4,272 patients. The significant size difference between the groups emphasized the study's focus on OSAHS, using the non-OSAHS mainly for comparison. Methods: Sleep technicians monitored the OSAHS patient group overnight by polysomnography (PSG), the apnea-hypopnea index (AHI), the mean oxygen saturation (MSpO2), lowest oxygen saturation (LSpO2), the oxygen desaturation index (ODI) and the total sleep time with oxygen saturation less than 90% (TST-SpO2 <90%). Healthy volunteers self-monitored sleep patterns at home, using the CONTEC RS01 respiration sleep monitor with a wristwatch sleep apnea screen meter. The RSO1 wristwatch-style device has already been studied for consistency and sensitivity with the Alice-6 standard multi-lead sleep monitor and can be used for OSAHS screening in this region. Results: LSpO2 recordings from healthy volunteers (86.36 ± 3.57%) and non-OSAHS (AHI <5/h) cohort (78.59 ± 11.99%) were much lower than previously reported normal values. Regression analysis identified no correlations between AHI levels and MSpO2 or TST-SpO2 <90%, weak correlations between AHI levels and LSpO2 or MSpO2, and a strongly significant correlation between AHI levels and the ODI (r = 0.76, p < 0.05). The data also indicated that the appropriate clinical thresholds for OSAHS patients living at mild high altitude are classified as mild, moderate, or severe based on LSpO2 saturation criteria of 0.85-0.90, 0.65-0.84, or <0.65, respectively. Conclusion: The study findings suggest that individuals with an AHI score below 5 in OSAHS, who reside in high-altitude areas, also require closer monitoring due to the elevated risk of nocturnal hypoxia. Furthermore, the significant correlation between ODI values and the severity of OSAHS emphasizes the importance of considering treatment options. Additionally, the assessment of hypoxemia severity thresholds in OSAHS patients living in high-altitude regions provides valuable insights for refining diagnostic guidelines.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32683285

RESUMEN

Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.


Asunto(s)
Peces Planos/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Peces Planos/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Masculino , ARN Mensajero/genética , Diferenciación Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA