Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 190-201.e11, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204101

RESUMEN

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.


Asunto(s)
Infecciones por VIH/transmisión , VIH/genética , Inmunoglobulina G/sangre , Transmisión Vertical de Enfermedad Infecciosa , Placenta/metabolismo , Complicaciones Infecciosas del Embarazo/virología , Receptores de IgG/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Glicosilación , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Lactante , Recién Nacido , Malaui , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Estados Unidos , Carga Viral/genética
2.
J Immunol ; 208(3): 762-771, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987112

RESUMEN

Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired H and L chains of Igs and VDJ and VJ chains of TCRs from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single-cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. We used custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single-cell immune repertoire profiling. Using these rhesus-specific assays, we sequenced Ig and TCR repertoires in >60,000 cells from cryopreserved rhesus PBMCs, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single-cell level.


Asunto(s)
Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Exones VDJ/genética , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Macaca mulatta , Análisis de la Célula Individual , Linfocitos T/inmunología , Transcriptoma/genética
3.
Nucleic Acids Res ; 50(1): e5, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634809

RESUMEN

Growing evidence suggests that functional cis-regulatory elements (cis-REs) not only exist in epigenetically marked but also in unmarked sites of the human genome. While it is already difficult to identify cis-REs in the epigenetically marked sites, interrogating cis-REs residing within the unmarked sites is even more challenging. Here, we report adapting Reel-seq, an in vitro high-throughput (HTP) technique, to fine-map cis-REs at high resolution over a large region of the human genome in a systematic and continuous manner. Using Reel-seq, as a proof-of-principle, we identified 408 candidate cis-REs by mapping a 58 kb core region on the aging-related CDKN2A/B locus that harbors p16INK4a. By coupling Reel-seq with FREP-MS, a proteomics analysis technique, we characterized two cis-REs, one in an epigenetically marked site and the other in an epigenetically unmarked site. These elements are shown to regulate the p16INK4a expression over an ∼100 kb distance by recruiting the poly(A) binding protein PABPC1 and the transcription factor FOXC2. Downregulation of either PABPC1 or FOXC2 in human endothelial cells (ECs) can induce the p16INK4a-dependent cellular senescence. Thus, we confirmed the utility of Reel-seq and FREP-MS analyses for the systematic identification of cis-REs at high resolution over a large region of the human genome.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Humanos
4.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228762

RESUMEN

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-15/inmunología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Citomegalovirus , Femenino , Vectores Genéticos , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control
5.
J Infect Dis ; 225(5): 846-855, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34610131

RESUMEN

BACKGROUND: Previous research revealed antibodies targeting Chlamydia trachomatis elementary bodies was not associated with reduced endometrial or incident infection in C. trachomatis-exposed women. However, data on the role of C. trachomatis protein-specific antibodies in protection are limited. METHODS: A whole-proteome C. trachomatis array screening serum pools from C. trachomatis-exposed women identified 121 immunoprevalent proteins. Individual serum samples were probed using a focused array. Immunoglobulin (Ig) G antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon rank sum test. The impact of the breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA sequencing quantified C. trachomatis gene transcripts in cervical swab samples from infected women. RESULTS: IgG to pGP3 and CT_005 were associated with reduced endometrial infection; anti-CT_443, anti-CT_486, and anti-CT_123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. Messenger RNAs for immunoprevalent C. trachomatis proteins were highly abundant in the cervix. CONCLUSIONS: Protein-specific C. trachomatis antibodies are not sufficient to protect against ascending or incident infection. However, cervical C. trachomatis gene transcript abundance positively correlates with C. trachomatis protein immunogenicity. These abundant and broadly recognized antigens are viable vaccine candidates.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Anticuerpos Antibacterianos , Femenino , Humanos , Inmunoglobulina G , Reinfección
6.
J Immunol ; 204(12): 3434-3444, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32376650

RESUMEN

The diversity of Ig and TCR repertoires is a focal point of immunological studies. Rhesus macaques (Macaca mulatta) are key for modeling human immune responses, placing critical importance on the accurate annotation and quantification of their Ig and TCR repertoires. However, because of incomplete reference resources, the coverage and accuracy of the traditional targeted amplification strategies for profiling rhesus Ig and TCR repertoires are largely unknown. In this study, using long read sequencing, we sequenced four Indian-origin rhesus macaque tissues and obtained high-quality, full-length sequences for over 6000 unique Ig and TCR transcripts, without the need for sequence assembly. We constructed, to our knowledge, the first complete reference set for the constant regions of all known isotypes and chain types of rhesus Ig and TCR repertoires. We show that sequence diversity exists across the entire variable regions of rhesus Ig and TCR transcripts. Consequently, existing strategies using targeted amplification of rearranged variable regions comprised of V(D)J gene segments miss a significant fraction (27-53% and 42-49%) of rhesus Ig/TCR diversity. To overcome these limitations, we designed new rhesus-specific assays that remove the need for primers conventionally targeting variable regions and allow single cell level Ig and TCR repertoire analysis. Our improved approach will enable future studies to fully capture rhesus Ig and TCR repertoire diversity and is applicable for improving annotations in any model organism.


Asunto(s)
Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Macaca mulatta/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transcriptoma/genética , Transcriptoma/inmunología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Macaca mulatta/genética
7.
J Infect Dis ; 224(12 Suppl 2): S47-S55, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34396406

RESUMEN

Chlamydia trachomatis-genital infection in women can be modeled in mice using Chlamydia muridarum. Using this model, it has been shown that the cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1α lead to irreversible tissue damage in the oviducts. In this study, we investigated the contribution of TNFα on IL-1α synthesis in infected epithelial cells. We show that C muridarum infection enhanced TNFα-induced IL-1α expression and release in a mouse epithelial cell line. In addition to IL-1α, several TNFα-induced inflammatory genes were also highly induced, and infection enhanced TNF-induced cell death. In the mouse model of genital infection, oviducts from mice lacking the TNFα receptor displayed minimal staining for IL-1α compared with wild-type oviducts. Our results suggest TNFα and IL-1α enhance each other's downstream effects resulting in a hyperinflammatory response to chlamydial infection. We propose that biologics targeting TNF-induced IL-1α synthesis could be used to mitigate tissue damage during chlamydial infection.


Asunto(s)
Muerte Celular , Infecciones por Chlamydia , Chlamydia muridarum/inmunología , Interleucina-1alfa , Factor de Necrosis Tumoral alfa , Animales , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/metabolismo , Células Epiteliales , Femenino , Interleucina-1alfa/inmunología , Interleucina-1alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Cell Sci ; 132(17)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31409692

RESUMEN

Metastasis accounts for the majority of all cancer deaths, yet the process remains poorly understood. A pivotal step in the metastasis process is the exiting of tumor cells from the circulation, a process known as extravasation. However, it is unclear how tumor cells extravasate and whether multicellular clusters of tumor cells possess the ability to exit as a whole or must first disassociate. In this study, we use in vivo zebrafish and mouse models to elucidate the mechanism tumor cells use to extravasate. We found that circulating tumor cells exit the circulation using the recently identified extravasation mechanism, angiopellosis, and do so as both clusters and individual cells. We further show that when melanoma and cervical cancer cells utilize this extravasation method to exit as clusters, they exhibit an increased ability to form tumors at distant sites through the expression of unique genetic profiles. Collectively, we present a new model for tumor cell extravasation of both individual and multicellular circulating tumor cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Movimiento Celular/fisiología , Células Neoplásicas Circulantes/metabolismo , Animales , Recuento de Células , Células HeLa , Humanos , Ratones , Metástasis de la Neoplasia
9.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434737

RESUMEN

HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.


Asunto(s)
Linfocitos B/virología , Infecciones por VIH/virología , VIH-1/genética , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Vacunas de ADN/administración & dosificación , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Estudios de Casos y Controles , Ensayos Clínicos Fase II como Asunto , Vectores Genéticos/administración & dosificación , Infecciones por VIH/epidemiología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Seropositividad para VIH , VIH-1/inmunología , Humanos , Incidencia , Fagocitosis , Estados Unidos/epidemiología , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
10.
Nucleic Acids Res ; 43(Database issue): D737-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392405

RESUMEN

The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼ 20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼ 15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Primates/genética , Análisis de Secuencia de ARN , Animales , Internet , Macaca , Anotación de Secuencia Molecular , Especificidad de Órganos , Estándares de Referencia , Alineación de Secuencia/normas
11.
PLoS Pathog ; 10(8): e1004250, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25144235

RESUMEN

The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies.


Asunto(s)
Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Neumonía Viral/patología , Animales , Callithrix , Infecciones por Coronavirus/virología , Inmunohistoquímica , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio , Neumonía Viral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
J Virol ; 88(16): 8768-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850744

RESUMEN

UNLABELLED: Polyadenylated mature mRNAs are the focus of standard transcriptome analyses. However, the profiling of nascent transcripts, which often include nonpolyadenylated RNAs, can unveil novel insights into transcriptional regulation. Here, we separately sequenced total RNAs (Total RNAseq) and mRNAs (mRNAseq) from the same HIV-1-infected human CD4(+) T cells. We found that many nonpolyadenylated RNAs were differentially expressed upon HIV-1 infection, and we identified 8 times more differentially expressed genes at 12 h postinfection by Total RNAseq than by mRNAseq. These expression changes were also evident by concurrent changes in introns and were recapitulated by later mRNA changes, revealing an unexpectedly significant delay between transcriptional initiation and mature mRNA production early after HIV-1 infection. We computationally derived and validated the underlying regulatory programs, and we predicted drugs capable of reversing these HIV-1-induced expression changes followed by experimental confirmation. Our results show that combined total and mRNA transcriptome analysis is essential for fully capturing the early host response to virus infection and provide a framework for identifying candidate drugs for host-directed therapy against HIV/AIDS. IMPORTANCE: In this study, we used mass sequencing to identify genes differentially expressed in CD4(+) T cells during HIV-1 infection. To our surprise, we found many differentially expressed genes early after infection by analyzing both newly transcribed unprocessed pre-mRNAs and fully processed mRNAs, but not by analyzing mRNAs alone, indicating a significant delay between transcription initiation and mRNA production early after HIV-1 infection. These results also show that important findings could be missed by the standard practice of analyzing mRNAs alone. We then derived the regulatory mechanisms driving the observed expression changes using integrative computational analyses. Further, we predicted drugs that could reverse the observed expression changes induced by HIV-1 infection and showed that one of the predicted drugs indeed potently inhibited HIV-1 infection. This shows that it is possible to identify candidate drugs for host-directed therapy against HIV/AIDS using our genomics-based approach.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Transcripción Genética/genética , Linfocitos T CD4-Positivos/virología , Línea Celular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Infecciones por VIH/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , ARN Mensajero/genética , Replicación Viral/genética
13.
J Virol ; 88(14): 7962-72, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807713

RESUMEN

Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4(+) T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation. Importance: The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.


Asunto(s)
Adhesión Celular , Interacciones Huésped-Patógeno , Mucosa Intestinal/inmunología , Mucosa Intestinal/virología , Recto/inmunología , Recto/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Claudinas/metabolismo , Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Mucosa Intestinal/fisiología , Células Asesinas Naturales/inmunología , Macaca mulatta , Masculino , Linfocitos T/inmunología , Factores de Tiempo
15.
Nucleic Acids Res ; 41(Database issue): D906-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23203872

RESUMEN

RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Primates/genética , Transcriptoma , Animales , Genoma Humano , Humanos , Internet , Primates/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN
16.
J Virol ; 87(24): 13676-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109218

RESUMEN

The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.


Asunto(s)
Genoma Viral , Herpesvirus Humano 8/genética , Macaca nemestrina/virología , Enfermedades de los Primates/virología , Sarcoma de Kaposi/veterinaria , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Herpesvirus Humano 8/química , Herpesvirus Humano 8/clasificación , Herpesvirus Humano 8/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Rhadinovirus/química , Rhadinovirus/clasificación , Rhadinovirus/genética , Sarcoma de Kaposi/virología , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
17.
J Med Primatol ; 43(5): 317-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24810475

RESUMEN

BACKGROUND: The genome annotations of rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques, two of the most common non-human primate animal models, are limited. METHODS: We analyzed large-scale macaque RNA-based next-generation sequencing (RNAseq) data to identify un-annotated macaque transcripts. RESULTS: For both macaque species, we uncovered thousands of novel isoforms for annotated genes and thousands of un-annotated intergenic transcripts enriched with non-coding RNAs. We also identified thousands of transcript sequences which are partially or completely 'missing' from current macaque genome assemblies. We showed that many newly identified transcripts were differentially expressed during SIV infection of rhesus macaques or during Ebola virus infection of cynomolgus macaques. CONCLUSIONS: For two important macaque species, we uncovered thousands of novel isoforms and un-annotated intergenic transcripts including coding and non-coding RNAs, polyadenylated and non-polyadenylated transcripts. This resource will greatly improve future macaque studies, as demonstrated by their applications in infectious disease studies.


Asunto(s)
Fiebre Hemorrágica Ebola/genética , Macaca fascicularis , Macaca mulatta , Enfermedades de los Monos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Transcriptoma , Animales , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Secuenciación de Nucleótidos de Alto Rendimiento , India , Mauricio , Datos de Secuencia Molecular , Enfermedades de los Monos/virología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Análisis de Secuencia de ARN , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología
18.
RNA Biol ; 11(7): 875-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24922324

RESUMEN

The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb).


Asunto(s)
Antivirales/administración & dosificación , Interferón-alfa/administración & dosificación , Pulmón/virología , Infecciones por Virus ARN/tratamiento farmacológico , Infecciones por Virus ARN/genética , ARN Largo no Codificante/genética , Animales , Antivirales/farmacología , Línea Celular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Interferón-alfa/farmacología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Infecciones por Virus ARN/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Análisis de Secuencia de ARN
19.
Nucleic Acids Res ; 40(22): e171, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22904078

RESUMEN

UNLABELLED: We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. AVAILABILITY: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip.


Asunto(s)
Algoritmos , Compresión de Datos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Probabilidad , Programas Informáticos
20.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585942

RESUMEN

Long noncoding RNAs (lncRNAs) are a newer class of noncoding transcripts identified as key regulators of biological processes. Here we aimed to identify novel lncRNA targets that play critical roles in major human respiratory viral infections by systematically mining large-scale transcriptomic datasets. Using bulk RNA-sequencing (RNA-seq) analysis, we identified a previously uncharacterized lncRNA, named virus inducible lncRNA modulator of interferon response (VILMIR), that was consistently upregulated after in vitro influenza infection across multiple human epithelial cell lines and influenza A virus subtypes. VILMIR was also upregulated after SARS-CoV-2 and RSV infections in vitro. We experimentally confirmed the response of VILMIR to influenza infection and interferon-beta (IFN-ß) treatment in the A549 human epithelial cell line and found the expression of VILMIR was robustly induced by IFN-ß treatment in a dose and time-specific manner. Single cell RNA-seq analysis of bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients uncovered that VILMIR was upregulated across various cell types including at least five immune cells. The upregulation of VILMIR in immune cells was further confirmed in the human T cell and monocyte cell lines, SUP-T1 and THP-1, after IFN-ß treatment. Finally, we found that knockdown of VILMIR expression reduced the magnitude of host transcriptional responses to IFN-ß treatment in A549 cells. Together, our results show that VILMIR is a novel interferon-stimulated gene (ISG) that regulates the host interferon response and may be a potential therapeutic target for human respiratory viral infections upon further mechanistic investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA