Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 122(18): 14594-14678, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36054924

RESUMEN

Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.


Asunto(s)
Fenómenos Mecánicos , Polímeros , Sustancias Macromoleculares/química , Polímeros/química
2.
Langmuir ; 38(17): 5257-5268, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34787428

RESUMEN

Hydrophobic interaction plays an important role in numerous interfacial phenomena and biophysical and industrial processes. In this work, polystyrene (PS) was used as a model hydrophobic polymer for investigating its hydrophobic interaction with highly deformable objects (i.e., air bubbles and oil droplets) in aqueous solutions. The effects of polymer molecular weight, solvent (i.e., addition of ethanol to water), the presence of surface-active species, and hydrodynamic conditions were investigated, via direct surface force measurements using the bubble/drop probe atomic force microscopy (AFM) technique and theoretical calculations based on the Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. It was found that the PS of low molecular weight (i.e., PS590 and PS810) showed slightly weaker hydrophobic interactions with air bubbles or oil droplets, as compared to glassy PS of higher molecular weight (i.e., PS1110, PS2330, PS46300, and PS1M). The hydrophobic interaction between PS and air bubbles in a 1 M NaCl aqueous solution with 10 vol % ethanol was weaker than that in the bare aqueous solution. Such effects on the hydrophobic interactions are possibly achieved by influencing the structuring/ordering of water molecules close to the hydrophobic polymer surfaces by tuning the surface chain mobility and surface roughness of polymers. It was found that the addition of three surface-active species, i.e., cetyltrimethylammonium chloride (CTAC), Pluronic F-127, and sodium dodecyl sulfate (SDS), to the aqueous media could suppress the attachment of the hydrophobic polymer and air bubbles or oil droplets, most likely caused by the additional steric repulsion due to the adsorbed surface-active species at the bubble/polymer/oil interfaces. Our results have improved the fundamental understanding of the interaction mechanisms between hydrophobic polymers and gas bubbles or oil droplets, with useful implications on developing effective methods for modulating the related interfacial interactions in many engineering applications.

3.
Small ; 16(43): e2004132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33006447

RESUMEN

Coacervation plays a critical role in numerous biological activities such as constructing biological tissues and achieving robust wet adhesion of marine sessile organisms, which conventionally occurs when oppositely charged polyelectrolytes are mixed in aqueous solutions driven by electrostatic attraction. Here, a novel type of adhesive coacervate is reported, driven by hydrogen-bonding interactions, readily formed by mixing silicotungstic acid and nonionic polyethylene glycol in water, providing a new approach for developing coacervates from nonionic systems. The as-prepared coacervate is easily paintable underwater, show strong wet adhesion to diverse substrates, and has been successfully applied as a hemostatic agent to treat organ injuries without displaying hemolytic activity, while with inherent antimicrobial properties thus avoiding inflammations and infections due to microorganism accumulation. This work demonstrates that coacervation can occur in salt-free environments via non-electrostatic interactions, providing a new platform for engineering multifunctional coacervate materials as tissue glues, wound dressings and membrane-free cell systems.


Asunto(s)
Adhesivos , Agua , Hidrógeno , Polielectrolitos
4.
Circ Res ; 115(11): 919-28, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25249569

RESUMEN

RATIONALE: Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane-related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca(2+) handling remained unexplored. OBJECTIVE: We investigated the remodeling of Ca(2+) homeostasis in ventricular cardiomyocytes derived from transgenic rabbit model of LQT2 to determine whether these changes contribute to triggered activity in the form of early after depolarizations (EADs). METHODS AND RESULTS: Confocal Ca(2+) imaging revealed decrease in amplitude of Ca(2+) transients and sarcoplasmic reticulum Ca(2+) content in LQT2 myocytes. Experiments using sarcoplasmic reticulum-entrapped Ca(2+) indicator demonstrated enhanced ryanodine receptor (RyR)-mediated sarcoplasmic reticulum Ca(2+) leak in LQT2 cells. Western blot analyses showed increased phosphorylation of RyR in LQT2 myocytes versus controls. Coimmunoprecipitation experiments demonstrated loss of protein phosphatases type 1 and type 2 from the RyR complex. Stimulation of LQT2 cells with ß-adrenergic agonist isoproterenol resulted in prolongation of the plateau of action potentials accompanied by aberrant Ca(2+) releases and EADs, which were abolished by inhibition of Ca(2+)/calmodulin-dependent protein kinase type 2. Computer simulations showed that late aberrant Ca(2+) releases caused by RyR hyperactivity promote EADs and underlie the enhanced triggered activity through increased forward mode of Na(+)/Ca(2+) exchanger type 1. CONCLUSIONS: Hyperactive, hyperphosphorylated RyRs because of reduced local phosphatase activity enhance triggered activity in LQT2 syndrome. EADs are promoted by aberrant RyR-mediated Ca(2+) releases that are present despite a reduction of sarcoplasmic reticulum content. Those releases increase forward mode Na(+)/Ca(2+) exchanger type 1, thereby slowing repolarization and enabling L-type Ca(2+) current reactivation.


Asunto(s)
Potenciales de Acción , Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Animales Modificados Genéticamente , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Fosforilación , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Conejos , Intercambiador de Sodio-Calcio/metabolismo
5.
Vet Ophthalmol ; 18(3): 186-90, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25123814

RESUMEN

OBJECTIVE: To investigate the occurrence of spontaneous cataracts in a breeding colony of the inbred EIII/JC strain of New Zealand White rabbits (Oryctolagus cuniculi) and the congenic strain of EIII/JC-HLA-A2.1transgenic rabbits. PROCEDURE: A retrospective study was conducted by collecting and analyzing data from clinical records for individual rabbits filed between January 2011 and October 2013. RESULTS: Thirteen cases (eight females and five males) of cataract were identified in a group of 51 EIII/JC inbred rabbits with a morbidity of 25.5%. The median age of the rabbits identified with unilateral or bilateral cataracts was 43 months in contrast to the median age of 23 months of the entire group of 51 rabbits. Additionally, seven cases (five females and two males) of cataracts were identified in a group of 21 EIII/JC-HLA-A2.1 transgenic rabbits. The EIII/JC-HLA-A2.1 transgenic rabbits showed similar morbidity (33.3%) and median age (41 months) for the development of cataracts as the EIII/JC rabbits. In both groups, none of the rabbits younger than 37 months developed cataracts while 13 (93%) of 14 EIII/JC rabbits aged 37-49 months and seven (63.6%) of 11 EIII/JC-HLA-A2.1 transgenic rabbits aged 37-43 months developed cataracts. In contrast, none of 78 outbred rabbits with a median age of 26 months (10-67 months) developed cataracts. CONCLUSION: Results of this study indicate that the occurrence and high incidence of spontaneous cataracts in this inbred strain (EIII/JC) of rabbits were strictly age related and consistently transmitted through inbreeding.


Asunto(s)
Envejecimiento , Catarata/veterinaria , Predisposición Genética a la Enfermedad , Conejos , Animales , Animales Modificados Genéticamente , Catarata/patología , Femenino , Masculino
6.
Theranostics ; 14(5): 2210-2231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505603

RESUMEN

CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS: The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS: Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION: The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.


Asunto(s)
Monocitos , Bazo , Ratones , Animales , Monocitos/patología , Bazo/patología , Hígado/patología , Cirrosis Hepática/patología , Ratones Transgénicos , Citocinas , Microscopía Intravital , Ratones Endogámicos C57BL
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(1): 40-3, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23586220

RESUMEN

In the present study, dielectric barrier homogenous discharge in nitrogen was obtained between large plate electrodes (150 x 300 mm) at atmospheric pressure and the emission spectra of N2 (C3pi(u) --> B3 pi(g)) and N2+ (B2 sigma(u)+ --> X2 sigma(g)+ 0-0 391.4 nm) were recorded. It was found that both the emission intensities of N2 (C3 pi(u) --> B3 pi(g) and N2+ (B2 sigma(u)+ --> X2 sigma(g)+ 0-0 391.4 nm) increase with the rising of the applied voltage and the driving frequency, respectively. The main physicochemical formation mechanism of N2+ (B2 sigma(u)+) in N2 and He+N2 mixtures homogenous discharge was discussed, and the penning ionization was proved to be the dominant formation mechanism.

8.
Front Immunol ; 14: 1288273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124754

RESUMEN

Cancer immunotherapy has developed rapidly in recent years and stands as one of the most promising techniques for combating cancer. To develop and optimize cancer immunotherapy, it is crucial to comprehend the interactions between immune cells and tumor cells in the tumor microenvironment (TME). The TME is complex, with the distribution and function of immune cells undergoing dynamic changes. There are several research techniques to study the TME, and intravital imaging emerges as a powerful tool for capturing the spatiotemporal dynamics, especially the movement behavior and the immune function of various immune cells in real physiological state. Intravital imaging has several advantages, such as high spatio-temporal resolution, multicolor, dynamic and 4D detection, making it an invaluable tool for visualizing the dynamic processes in the TME. This review summarizes the workflow for intravital imaging technology, multi-color labeling methods, optical imaging windows, methods of imaging data analysis and the latest research in visualizing the spatio-temporal dynamics and function of immune cells in the TME. It is essential to investigate the role played by immune cells in the tumor immune response through intravital imaging. The review deepens our understanding of the unique contribution of intravital imaging to improve the efficiency of cancer immunotherapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/fisiología , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Diagnóstico por Imagen , Inmunoterapia/métodos , Microscopía Intravital/métodos
9.
J Colloid Interface Sci ; 647: 264-276, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37257403

RESUMEN

HYPOTHESIS: Surface interactions of bubbles and oil with interface-active species like asphaltenes influence many interfacial phenomena in various engineering processes. It holds both fundamental and practical significance to quantitatively characterize these interactions. EXPERIMENTS: The surface forces of air bubbles, asphaltenes and asphaltenes-toluene droplets in various aqueous solutions have been quantified using an integrated thin film drainage apparatus and an atomic force microscope coupled with bubble probe. The effects of asphaltenes concentration, pH, salinity, Ca2+ ions and surfactants have been examined. FINDINGS: Hydrophobic interaction drives attachment of bubbles and asphaltenes surfaces or oil droplets under high salinity condition. Increasing asphaltenes concentration in oil droplets enhances their hydrophobic attraction with bubbles due to strengthened asphaltenes adsorption and aggregation at oil-water interface. Increasing pH weakens the hydrophobic interaction as oil surfaces become more negatively charged and less hydrophobic. Under low salinity condition, strong electrical double layer and van der Waals repulsion inhibits the bubble-oil droplet contact. Introducing Ca2+ ions and surfactants leads to strong steric repulsion, preventing bubble-oil contact. This research has advanced our mechanistic understanding of how bubbles and oil droplets interact in aqueous systems and offers useful insights to modulate such interactions in oil production, water treatment and other interfacial processes.

10.
ACS Appl Mater Interfaces ; 15(15): 19560-19573, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37036950

RESUMEN

Stimuli-responsive hydrogels have attracted much attention over the past decade for potential bioengineering applications such as wound dressing and drug delivery. In this work, a pH and temperature dual-responsive microgel-embedded hydrogel has been fabricated by incorporating poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAAm-co-AAc) based microgel particles into polyacrylamide (PAAm)/chitosan (CS) semi-interpenetrating polymer network (semi-IPN), denoted as microgel@PAM/CS. The resultant hydrogel possesses excellent mechanical properties including stretchability, compressibility, and elasticity. In addition, the microgel@PAM/CS hydrogels can tightly adhere to the surfaces of a variety of tissues such as porcine skin, kidney, intestine, liver, and heart. Moreover, it shows controlled dual-drug release profile of both bovine serum albumin (BSA) (as a model protein) and sulfamethoxazole (SMZ), an antibiotic. Excellent antimicrobial properties are obtained for SMZ-loaded microgel@PAM/CS hydrogels. Compared with traditional drug administration methods such as by mouth, injection, and inhalation, the microgel@PAM/CS hydrogels possess advantages such as higher drug loading efficiency (by more than 80%) and controllable and sustained (over 48 h) release. The microgel@PAM/CS hydrogels can significantly enhance the wound healing process. This work provides a facile approach for the fabrication of multifunctional stimuli-responsive microparticle-embedded hydrogels with semi-IPN structures, and the as-prepared microgel@PAM/CS hydrogels have great potential for applications as smart wound dressing materials in biomedical engineering.


Asunto(s)
Quitosano , Microgeles , Temperatura , Adhesivos , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/química , Polímeros/química , Cicatrización de Heridas , Albúmina Sérica Bovina , Sulfametoxazol , Concentración de Iones de Hidrógeno
11.
Am J Physiol Heart Circ Physiol ; 302(11): H2321-30, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22447944

RESUMEN

Ventricular arrhythmias in the setting of a healed myocardial infarction have been studied to a much lesser degree than acute and subacute infarction, due to the pericardial scarring, which results from the traditional open-chest techniques used for myocardial infarction (MI) induction. We sought to develop a segmental MI with low perioperative mortality in the rabbit that allows optimal visualization and therefore improved study of the infarction borderzone. Rabbits underwent MI using endovascular coil occlusion of the first obtuse marginal artery. Three weeks postprocedure, we evaluated our model by echocardiography and electrophysiology studies, optical mapping of isolated hearts, and histological studies. Seventeen rabbits underwent the protocol (12 MI and 5 sham) with a 92% survival to completion of the study (11 MI and 5 sham). MI rabbits demonstrated wall motion abnormalities on echocardiography while shams did not. At electrophysiological study, two MI rabbits had inducible ventricular tachycardia and one had inducible ventricular fibrillation. Isolated hearts demonstrated no pericardial scarring with a smooth, easily identifiable infarct borderzone. Optical mapping of the borderzone region showed successful mapping of peri-infarct reentry formation, with ventricular fibrillation inducible in 11 of 11 MI hearts and 1 of 5 sham hearts. We demonstrate successful high resolution mapping in the borderzone, showing delayed conduction in this region corresponding to late deflections in the QRS on ECG. We report the successful development of a minimally invasive MI via targeted coil delivery to the obtuse marginal artery with an exceptionally high rate of procedural survival and an arrhythmogenic phenotype. This model mimics human post-MI on echocardiography, gross pathology, histology, and electrophysiology.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Animales , Arritmias Cardíacas/epidemiología , Ecocardiografía , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Embolia/complicaciones , Incidencia , Masculino , Infarto del Miocardio/etiología , Conejos
12.
Viruses ; 14(9)2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36146770

RESUMEN

Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral-host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.


Asunto(s)
Papillomavirus del Conejo de Rabo Blanco , Neoplasias , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Animales , Papillomavirus del Conejo de Rabo Blanco/genética , Humanos , Papillomaviridae/genética , Conejos
13.
J Colloid Interface Sci ; 618: 111-120, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338921

RESUMEN

Conductive hydrogels hold great promises in wearable soft electronics. However, the weak mechanical properties, low sensitivity and the absence of multifunctionalities (e.g., self-healing, self-adhesive, etc.) of the conventional conductive hydrogels limit their applications. Thus, developing multifunctional hydrogels may address some of these technical issues. In this work, a multifunctional conductive hydrogel strain sensor is fabricated by incorporating a conductive polymer Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) into a mechanically robust poly (vinyl alcohol) (PVA)/ poly (acrylic acid) (PAA) double network (DN) hydrogel. The as-prepared hydrogel sensor could span a wide spectrum of mechanical properties by simply tuning the polymer composition and the number of freezing-thawing cycles. In addition, the dynamic hydrogen bonding interactions endow the hydrogel sensor with self-healing property and reversible adhesiveness on diverse substrates. Moreover, the hydrogel sensor shows high sensitivity (Gauge Factor from 2.21 to 3.82) and can precisely detect some subtle human motions (e.g., pulse and vocal cord vibration). This work provides useful insights into the development of conductive hydrogel-based wearable soft electronics.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , Humanos , Hidrogeles/química , Alcohol Polivinílico/química
14.
J Clin Invest ; 118(6): 2246-59, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18464931

RESUMEN

Long QT syndrome (LQTS) is a heritable disease associated with ECG QT interval prolongation, ventricular tachycardia, and sudden cardiac death in young patients. Among genotyped individuals, mutations in genes encoding repolarizing K+ channels (LQT1:KCNQ1; LQT2:KCNH2) are present in approximately 90% of affected individuals. Expression of pore mutants of the human genes KCNQ1 (KvLQT1-Y315S) and KCNH2 (HERG-G628S) in the rabbit heart produced transgenic rabbits with a long QT phenotype. Prolongations of QT intervals and action potential durations were due to the elimination of IKs and IKr currents in cardiomyocytes. LQT2 rabbits showed a high incidence of spontaneous sudden cardiac death (>50% at 1 year) due to polymorphic ventricular tachycardia. Optical mapping revealed increased spatial dispersion of repolarization underlying the arrhythmias. Both transgenes caused downregulation of the remaining complementary IKr and IKs without affecting the steady state levels of the native polypeptides. Thus, the elimination of 1 repolarizing current was associated with downregulation of the reciprocal repolarizing current rather than with the compensatory upregulation observed previously in LQTS mouse models. This suggests that mutant KvLQT1 and HERG interacted with the reciprocal wild-type alpha subunits of rabbit ERG and KvLQT1, respectively. These results have implications for understanding the nature and heterogeneity of cardiac arrhythmias and sudden cardiac death.


Asunto(s)
Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Potenciales de Acción , Animales , Animales Modificados Genéticamente , Muerte Súbita , Modelos Animales de Enfermedad , Canal de Potasio ERG1 , Ecocardiografía , Electrofisiología/métodos , Canales de Potasio Éter-A-Go-Go , Genotipo , Ventrículos Cardíacos/patología , Células Musculares/patología , Fenotipo , Canales de Potasio con Entrada de Voltaje/genética , Conejos
15.
J Cardiovasc Pharmacol ; 57(2): 223-30, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21135701

RESUMEN

Transgenic rabbits expressing pore mutants of K(V)7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase I(Kr).We hypothesized that NS1643 would shorten the action potential duration (APD(90)) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD(90) in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by I(Kr) augmentation. In conclusion, K(V)11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.


Asunto(s)
Animales Modificados Genéticamente/genética , Cresoles/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Compuestos de Fenilurea/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estudios Cruzados , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/agonistas , Femenino , Conejos , Distribución Aleatoria
16.
ACS Appl Mater Interfaces ; 13(40): 48239-48251, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34601867

RESUMEN

Underwater adhesion is a great challenge for the development of adhesives as the attractive interfacial intermolecular interactions are usually weakened by the surface hydration layer. The coacervation process of sessile organisms like marine mussels and sandcastle worms has inspired substantial research interest in the fabrication of long-lasting underwater adhesives, but they generally suffer from time-consuming curing triggered by surrounding environmental changes and cannot reserve the adhesiveness once damaged. Herein, an instant and repeatable underwater adhesive was developed based on the coacervation of tannic acid (TA) and poly(ethylene glycol)77-b-poly(propylene glycol)29-b-poly(ethylene glycol)77 (PEG-PPG-PEG, F68), which was driven by hydrogen-bonding interaction, and the hydrophobic cores of F68 micelles offered an additional cross-linking to enhance the mechanical properties. The TA-F68 coacervates could be facilely painted on different substrates, exhibiting robust and instant underwater adhesion (with adhesion strength up to 1.1 MPa on porcine skin) and excellent repeatability (at least 1000 cycles), superior to the previously reported coacervates. Due to the biological activities of TA, the underwater adhesive displayed innate anticancer and antibacterial properties against different types of cancer cells and bacteria, showing great potential for diverse biomedical applications, such as injectable drug carriers, tissue glues, and wound dressings.


Asunto(s)
Adhesivos/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Poloxámero/farmacología , Taninos/farmacología , Adhesividad , Adhesivos/química , Animales , Antibacterianos/química , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Poloxámero/química , Piel/metabolismo , Staphylococcus aureus/efectos de los fármacos , Porcinos , Taninos/química , Agua/química
17.
Adv Colloid Interface Sci ; 295: 102491, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34332278

RESUMEN

As non-renewable natural resources, minerals are essential in a broad range of biological and technological applications. The surface interactions of mineral particles with other objects (e.g., solids, bubbles, reagents) in aqueous suspensions play a critical role in mediating many interfacial phenomena involved in mineral flotation. In this work, we have reviewed the fundamentals of surface forces and quantitative surface property-force relationship of minerals, and the advances in the quantitative measurements of interaction forces of mineral-mineral, bubble-mineral and mineral-reagent using nanomechanical tools such as surface forces apparatus (SFA) and atomic force microscope (AFM). The quantitative correlation between surface properties of minerals at the solid/water interface and their surface interaction mechanisms with other objects in complex aqueous media at the nanoscale has been established. The existing challenges in mineral flotation such as characterization of anisotropic crystal plane or heterogeneous surface, low recovery of fine particle flotation, and in-situ electrochemical characterization of collectorless flotation as well as the future work to resolve the challenges based on the understanding and modulation of surface forces of minerals have also been discussed. This review provides useful insights into the fundamental understanding of the intermolecular and surface interaction mechanisms involved in mineral processing, with implications for precisely modulating related interfacial interactions towards the development of highly efficient industrial processes and chemical additives.

18.
Front Genet ; 12: 642444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584832

RESUMEN

The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.

19.
Am J Physiol Heart Circ Physiol ; 299(3): H643-55, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20581090

RESUMEN

We have generated transgenic rabbits lacking cardiac slow delayed-rectifier K(+) current [I(Ks); long QT syndrome type 1 (LQT1)] or rapidly activating delayed-rectifier K(+) current [I(Kr); long QT syndrome type 2 (LQT2)]. Rabbits with either genotype have prolonged action potential duration and QT intervals; however, only LQT2 rabbits develop atrioventricular (AV) blocks and polymorphic ventricular tachycardia. We therefore sought to characterize the genotype-specific differences in AV conduction and ventricular refractoriness in LQT1 and LQT2 rabbits. We carried out in vivo electrophysiological studies in LQT1, LQT2, and littermate control (LMC) rabbits at baseline, during isoproterenol infusion, and after a bolus of dofetilide and ex vivo optical mapping studies of the AV node/His-region at baseline and during dofetilide perfusion. Under isoflurane anesthesia, LQT2 rabbits developed infra-His blocks, decremental His conduction, and prolongation of the Wenckebach cycle length. In LQT1 rabbits, dofetilide altered the His morphology and slowed His conduction, resulting in intra-His block, and additionally prolonged the ventricular refractoriness, leading to pseudo-AV block. The ventricular effective refractory period (VERP) in right ventricular apex and base was significantly longer in LQT2 than LQT1 (P < 0.05) or LMC (P < 0.01), with a greater VERP dispersion in LQT2 than LQT1 rabbits. Isoproterenol reduced the VERP dispersion in LQT2 rabbits by shortening the VERP in the base more than in the apex but had no effect on VERP in LQT1. EPS and optical mapping experiments demonstrated genotype-specific differences in AV conduction and ventricular refractoriness. The occurrence of infra-His blocks in LQT2 rabbits under isoflurane and intra-His block in LQT1 rabbits after dofetilide suggest differential regional sensitivities of the rabbit His-Purkinje system to drugs blocking I(Kr) and I(Ks).


Asunto(s)
Nodo Atrioventricular/fisiopatología , Fascículo Atrioventricular/fisiopatología , Síndrome de QT Prolongado/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Modificados Genéticamente , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/fisiopatología , Nodo Atrioventricular/efectos de los fármacos , Fascículo Atrioventricular/efectos de los fármacos , Cardiotónicos/farmacología , Electrofisiología , Genotipo , Isoproterenol/farmacología , Síndrome de QT Prolongado/fisiopatología , Conejos
20.
Circ Arrhythm Electrophysiol ; 13(8): e006875, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32628505

RESUMEN

BACKGROUND: Long QT syndrome has been associated with sudden cardiac death likely caused by early afterdepolarizations (EADs) and polymorphic ventricular tachycardias (PVTs). Suppressing the late sodium current (INaL) may counterbalance the reduced repolarization reserve in long QT syndrome and prevent EADs and PVTs. METHODS: We tested the effects of the selective INaL blocker GS967 on PVT induction in a transgenic rabbit model of long QT syndrome type 2 using intact heart optical mapping, cellular electrophysiology and confocal Ca2+ imaging, and computer modeling. RESULTS: GS967 reduced ventricular fibrillation induction under a rapid pacing protocol (n=7/14 hearts in control versus 1/14 hearts at 100 nmol/L) without altering action potential duration or restitution and dispersion. GS967 suppressed PVT incidences by reducing Ca2+-mediated EADs and focal activity during isoproterenol perfusion (at 30 nmol/L, n=7/12 and 100 nmol/L n=8/12 hearts without EADs and PVTs). Confocal Ca2+ imaging of long QT syndrome type 2 myocytes revealed that GS967 shortened Ca2+ transient duration via accelerating Na+/Ca2+ exchanger (INCX)-mediated Ca2+ efflux from cytosol, thereby reducing EADs. Computer modeling revealed that INaL potentiates EADs in the long QT syndrome type 2 setting through (1) providing additional depolarizing currents during action potential plateau phase, (2) increasing intracellular Na+ (Nai) that decreases the depolarizing INCX thereby suppressing the action potential plateau and delaying the activation of slowly activating delayed rectifier K+ channels (IKs), suggesting important roles of INaL in regulating Nai. CONCLUSIONS: Selective INaL blockade by GS967 prevents EADs and abolishes PVT in long QT syndrome type 2 rabbits by counterbalancing the reduced repolarization reserve and normalizing Nai. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Antiarrítmicos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Piridinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Taquicardia Ventricular/prevención & control , Triazoles/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Modelos Animales de Enfermedad , Femenino , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Masculino , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Conejos , Canales de Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Fibrilación Ventricular/genética , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA