Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(12): e1011020, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542660

RESUMEN

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Streptococcus pneumoniae/metabolismo , Virus de la Influenza A/genética , Virulencia , Galactosa/metabolismo , Multiómica , Proteómica , Gripe Humana/genética , Gripe Humana/complicaciones
2.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272708

RESUMEN

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Asunto(s)
Uniones Adherentes/metabolismo , Colon/metabolismo , Células Epiteliales/metabolismo , Interferencia de ARN/fisiología , Animales , Carcinogénesis/metabolismo , Línea Celular , Proliferación Celular/fisiología , Neoplasias del Colon/metabolismo , Citoplasma/metabolismo , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
3.
Microbiol Resour Announc ; 13(4): e0122523, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38470029

RESUMEN

We present the whole-genome sequence of four bacterial endophytes associated with German hardneck garlic cloves (Allium sativum L.). Among them, Agrobacterium fabrum and Pantoea agglomerans are associated with plant protection, while Rahnella perminowiae and Stenotrophomonas lactitubi are pathogens. These data will facilitate the identification of genes to improve garlic.

4.
Microbiol Resour Announc ; 12(4): e0123222, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920211

RESUMEN

Here, we report the genome assemblies of 11 endophytic bacteria, isolated from poison ivy vine (Toxicodendron radicans). Five species belonging to the genus Pseudomonas, two species of Curtobacterium, one strain of Pantoea agglomerans, and one species from the Bacillus, Cellulomonas, and Enterobacter genera were isolated from the interior tissue of poison ivy.

5.
Microbiol Resour Announc ; 9(6)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029553

RESUMEN

Here, we report the isolation, identification, and whole-genome sequences of 12 bacterial strains associated with four mushroom species. The study was done as an inquiry-based exercise in an undergraduate genomics course (BIOL 340) in the Thomas H. Gosnell School of Life Sciences at the Rochester Institute of Technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA