Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 5: 8354, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25667059

RESUMEN

We describe a method for the creation of an efficient optical scatter trap by using fully crystalline octahedral Silicon nanoparticles (Si-NPs) of approximately 100 nanometres in size. The light trapping, even when probing an isolated nanoparticle, is revealed by an enormous amplification of the Raman yield of up to 10(8) times that of a similar Si bulk volume. The mechanism conceived and optimised for obtaining such a result was related to the capability of a Si octahedron to trap the light because of its geometrical parameters. Furthermore, Si-NPs act as very efficient light scatterers not only for the direct light beam but also for the trapped light after it escapes the nanoparticle. These two effects are observed, either superimposed or separated, by means of the Raman yield and by photoluminescence enhancements. The inductively coupled plasma synthesis process performed at a temperature of only 50 °C allows for the ubiquitous use of these particles on several substrates for optical and photovoltaic applications.

2.
Sci Rep ; 3: 2674, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056300

RESUMEN

Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA