Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1210898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383629

RESUMEN

Introduction: The S-layer proteins are a class of self-assembling proteins that form bi-dimensional lattices named S-Layer on the cell surface of bacteria and archaea. The protein SlpA, which is the major constituent of the Lactobacillus acidophilus S-layer, contains in its C-terminus region (SlpA284 - 444), a protein domain (named here as SLAPTAG) responsible for the association of SlpA to the bacterial surface. SLAPTAG was adapted for the development of a novel affinity chromatography method: the SLAPTAG-based affinity chromatography (SAC). Methods: Proteins with different molecular weights or biochemical functions were fused in-frame to the SLAPTAG and efficiently purified by a Bacillus subtilis-derived affinity matrix (named Bio-Matrix or BM). Different binding and elution conditions were evaluated to establish an optimized protocol. Results: The binding equilibrium between SLAPTAG and BM was reached after a few minutes of incubation at 4°C, with an apparent dissociation constant (KD) of 4.3µM. A reporter protein (H6-GFP-SLAPTAG) was used to compare SAC protein purification efficiency against commercial immobilized metal affinity chromatography. No differences in protein purification performance were observed between the two methods. The stability and reusability of the BM were evaluated, and it was found that the matrix remained stable for more than a year. BM could be reused up to five times without a significant loss in performance. Additionally, the recovery of bound SLAP-tagged proteins was explored using proteolysis with a SLAP-tagged version of the HRV-3c protease (SLAPASE). This released the untagged GFP while the cut SLAPTAG and the SLAPASE were retained in the BM. As an alternative, iron nanoparticles were linked to the BM, resulting in BMmag. The BMmag was successfully adapted for a magnetic SAC, a technique with potential applications in high-throughput protein production and purification. Discussion: The SAC protocol can be adapted as a universal tool for the purification of recombinant proteins. Furthermore, the SAC protocol utilizes simple and low-cost reagents, making it suitable for in-house protein purification systems in laboratories worldwide. This enables the production of pure recombinant proteins for research, diagnosis, and the food industry.

2.
Vaccine ; 40(8): 1065-1073, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35086742

RESUMEN

Shiga-toxin-producing Escherichia coli (STEC) is an important food-borne pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. Since no vaccines are available and antibiotic treatment is not recommended because promotes the appearance of HUS symptoms, the control of STEC intestinal colonization in cows, which is an important environmental reservoir, is crucial to control this zoonosis. Here, we evaluated the adaptation of an attenuated strain of Salmonella enterica serovar Typhimurium (ΔaroA mutant) as a vaccine platform for preventing STEC intestinal colonization that was studied in a mouse model. A chimeric antigen formed by the combination of the STEC peptides EspA36-192, Intimin653-935, Tir 258-361, and H7 flagellin352-374 (EITH7) was constructed and fused to the ß-lactamase signal sequence (bla SS) that drives the secretion of the chimeric antigen to the bacterial periplasmic space. Oral administration of ΔaroA-ST(EITH7) in a regime of three doses of immunization elicited both mucosal and humoral immune responses that protect mice against a STEC oral experimental infection. Remarkably, serum antibodies not only were able to bind the chimeric antigen EITH7 but also to block actin pedestal formation triggered by the type three secretion system (T3SS) in Enteropathogenic Escherichia coli (EPEC). Furthermore, a single-dose protocol was evaluated, and mice were orally immunized with ΔaroA-ST(EITH7). Interestingly, although with this protocol of immunization only fecal α-EITH7 IgA antibodies were induced and no α-EITH7 in sera were detected, mice were able to efficiently control an oral experimental infection with 1010 STEC (strain Escherichia coli O157:H7), suggesting that mucosal immune response was necessary and sufficient to control STEC intestinal colonization.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Vacunas contra la Salmonella , Escherichia coli Shiga-Toxigénica , Animales , Anticuerpos Antibacterianos , Bovinos , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/genética , Femenino , Ratones , Salmonella typhimurium
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA