Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255911

RESUMEN

The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.


Asunto(s)
Neoplasias Experimentales , Animales , Embrión de Pollo , Humanos , Bioensayo , Membrana Corioalantoides , Medicina de Precisión
2.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37511009

RESUMEN

Anemonia sulcata may be a source of marine natural products (MNPs) due to the antioxidant and antitumor activity of its crude homogenates shown in vitro in colon cancer cells. A bioguided chromatographic fractionation assay of crude Anemonia sulcata homogenates with and without its symbiont Symbiodinium was performed to characterize their bioactive composition and further determine their biological potential for the management of colorectal cancer (CRC). The 20% fractions retained the in vitro antioxidant activity previously reported for homogenates. As such, activation of antioxidant and detoxifying enzymes was also evaluated. The 40% fractions showed the greatest antiproliferative activity in T84 cells, synergistic effects with 5-fluoruracil and oxaliplatin, overexpression of apoptosis-related proteins, cytotoxicity on tumorspheres, and antiangiogenic activity. The predominantly polar lipids and toxins tentatively identified in the 20% and 40% fractions could be related to their biological activity in colon cancer cells although further characterizations of the active fractions are necessary to isolate and purify the bioactive compounds.


Asunto(s)
Neoplasias Colorrectales , Anémonas de Mar , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cromatografía , Neoplasias Colorrectales/tratamiento farmacológico
3.
Mar Drugs ; 20(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35621969

RESUMEN

Nannochloropsis gaditana is a microalga with interesting nutritional and functional value due to its high content of protein, polyunsaturated fatty acids, and bioactive compounds. However, the hardness of its cell wall prevents accessibility to these components. This work aimed to study the effect of a treatment to increase the fragility of the cell wall on the bioavailability of its nutrients and functional compounds. The antioxidant and antiproliferative capacity of functional extracts from treated and untreated N. gaditana was assessed, and the profile of bioactive compounds was characterized. Furthermore, to study the effect of treatment on its nutrient availability and functional capacity, an in vivo experiment was carried out using a rat experimental model and a 20% dietary inclusion level of microalgae. Functional extracts from treated N. gaditana exhibited higher antioxidant activity than the untreated control. Furthermore, the treated microalga induced hypoglycemic action, higher nitrogen digestibility, and increased hepatic antioxidant activity. In conclusion, N. gaditana has interesting hepatoprotective, antioxidant, and anti-inflammatory potential, thus proving itself an ideal functional food candidate, especially if the microalga is treated to increase the fragility of its cell wall before consumption.


Asunto(s)
Microalgas , Estramenopilos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Microalgas/metabolismo , Evaluación Nutricional , Ratas , Estramenopilos/metabolismo
4.
FASEB J ; 34(4): 5951-5966, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32157739

RESUMEN

Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.


Asunto(s)
Ganglios Espinales/patología , Hiperalgesia/patología , Macrófagos/patología , Neuralgia/patología , Neuronas/patología , Traumatismos de los Nervios Periféricos/complicaciones , Receptores sigma/fisiología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/inmunología , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Neuralgia/etiología , Neuralgia/metabolismo , Neuronas/inmunología , Neuronas/metabolismo , Receptor Sigma-1
5.
Pharmacol Res ; 163: 105339, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276102

RESUMEN

Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.


Asunto(s)
Dolor Crónico/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Analgesia , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Morfolinas/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuroglía/metabolismo , Pirazoles/uso terapéutico , Receptores sigma/antagonistas & inhibidores , Caracteres Sexuales , Receptor Sigma-1
6.
AAPS PharmSciTech ; 21(5): 178, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591920

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide. Its poor response to current treatment options in advanced stages and the need for efficient diagnosis in early stages call for the development of new therapeutic and diagnostic strategies. Some of them are based on the use of nanometric materials as carriers and releasers of therapeutic agents and fluorescent molecules, or even on the utilization of magnetic materials that provide very interesting properties. These nanoformulations present several advantages compared with the free molecular cargo, including increased drug solubility, bioavailability, stability, and tumor specificity. Moreover, tumor multidrug resistance has been decreased in some cases, leading to improved treatment effectiveness by reducing drug dose and potential side effects. Here, we present an updated overview of the latest advances in clinical research, in vivo studies, and patents regarding the application of nanoformulations in the treatment of CRC. Based on the information gathered, a wide variety of nanomaterials are being investigated in clinical research, even in advanced phases, i.e., close to reaching the market. In sum, these novel materials can offer remarkable advantages with respect to current therapies, which could be complemented or even replaced by these nanosystems in the near future.


Asunto(s)
Ensayos Clínicos como Asunto , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas , Animales , Neoplasias Colorrectales/patología , Humanos , Pronóstico
7.
Pharmacol Res ; 141: 451-465, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30634051

RESUMEN

Paclitaxel (PTX), a chemotherapy agent widely used to treat lung cancer, is characterised by high toxicity, low bioavailability and the need to use of excipients with serious side effects that limit its use. Paclitaxel encapsulation into nanoparticles (NPs) generates drug pharmacokinetic and pharmacodynamic advantages compared to free PTX. In this context, a NP carrier formed from a copolymer of lactic acid and glycolic acid (PLGA) has demonstrated high biocompatibility and low toxicity and therefore being approved by FDA to be used in humans. We synthesised a new PLGA NP and loaded it with PTX to improve drug efficacy and reduce side effects. This nanoformulation showed biocompatibility and no toxicity to human immune system. These NPs favor the intracellular uptake of PTX and enhance its antitumor effect in human and murine lung cancer cells, with up to 3.6-fold reductions in the PTX's IC50. Although PLGA NPs did not show any inhibitory capacity against P-glycoprotein, they increased the antitumor activity of PTX in cancer stem cells. Treatment with PLGA-PTX NPs increased apoptosis and significantly reduced the volume of the tumorspheres derived from A549 and LL2 cells by up to 36% and 46.5%, respectively. Biodistribution studies with PLGA-PTX NPs revealed an increase in drug circulation time, as well as a greater accumulation in lung and brain tissues compared to free PTX. Low levels of PTX were detected in the dorsal root ganglion with PLGA-PTX NPs, which could exert a protective effect against peripheral neuropathy. In vivo treatment with PLGA-PTX NPs showed a greater decrease in tumor volume (44.6%) in immunocompetent mice compared to free PTX (24.4%) and without increasing the toxicity of the drug. These promising results suggest that developed nanosystem provide a potential strategy for improving the chemotherapeutic effect and reducing the side effects of PTX.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células A549 , Animales , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Nanopartículas/química , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Distribución Tisular
8.
Int J Mol Sci ; 16(6): 12601-15, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26053394

RESUMEN

Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA) to direct E gene expression (pCEA-E) towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.


Asunto(s)
Bacteriófagos/metabolismo , Antígeno Carcinoembrionario/genética , Neoplasias del Colon/terapia , Terapia Genética/métodos , Proteínas Virales/metabolismo , Animales , Bacteriófagos/genética , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/virología , Células HCT116 , Células HT29 , Humanos , Ratones , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética
9.
Metabolites ; 13(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37512579

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates around 10%. The only curative option remains complete surgical resection, but due to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics has become a powerful technology for biomarker discovery, and several metabolomic-based panels have been proposed for PDAC diagnosis, but these advances have not yet been translated into the clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and WOS databases, using the terms "Biomarkers, Tumor", "Pancreatic Neoplasms", "Early Diagnosis", "Metabolomics" and "Lipidome" (January 2018-March 2023), and resulted in the selection of fourteen original studies that compared PDAC patients with subjects with other pancreatic diseases. These investigations showed amino acid and lipid metabolic pathways as the most commonly altered, reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques used and further studies will be needed to validate the clinical utility of these biomarkers.

10.
Pharmaceutics ; 15(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37514144

RESUMEN

The incidence of gastrointestinal cancers has increased in recent years. Current treatments present numerous challenges, including drug resistance, non-specificity, and severe side effects, needing the exploration of new therapeutic strategies. One promising avenue is the use of magnetic nanoparticles, which have gained considerable interest due to their ability to generate heat in tumor regions upon the application of an external alternating magnetic field, a process known as hyperthermia. This review conducted a systematic search of in vitro and in vivo studies published in the last decade that employ hyperthermia therapy mediated by magnetic nanoparticles for treating gastrointestinal cancers. After applying various inclusion and exclusion criteria (studies in the last 10 years where hyperthermia using alternative magnetic field is applied), a total of 40 articles were analyzed. The results revealed that iron oxide is the preferred material for magnetism generation in the nanoparticles, and colorectal cancer is the most studied gastrointestinal cancer. Interestingly, novel therapies employing nanoparticles loaded with chemotherapeutic drugs in combination with magnetic hyperthermia demonstrated an excellent antitumor effect. In conclusion, hyperthermia treatments mediated by magnetic nanoparticles appear to be an effective approach for the treatment of gastrointestinal cancers, offering advantages over traditional therapies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38078737

RESUMEN

Recently, the classical anatomy of the quadriceps femoris has been questioned after the publication of various morphological variations that differ from the classical description. Therefore, it is necessary to collect information to reach an agreement on its structure. For this, a systematic review was carried out using the Web of Science, Pubmed and ProQuest scientific databases, obtaining a total of 29 papers finally included in the systematic review after being subjected to inclusion and exclusion criteria. The results obtained showed an important and variable prevalence of new configurations described, such as additional heads in the rectus femoris, a different origin of the vastus intermedius, various portions of the vastus lateralis, or the involvement of the vastus medialis in the patellofemoral musculature. For this reason, understanding the anatomy of the quadriceps femoris is a matter that has not yet been fully resolved, with high variability among people that must be studied prior to the application of an invasive and/or surgical procedure.

12.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37173919

RESUMEN

Sarcomas are a diverse group of neoplasms with an incidence rate of 15% of childhood cancers. They exhibit a high tendency to develop early metastases and are often resistant to available treatments, resulting in poor prognosis and survival. In this context, cancer stem cells (CSCs) have been implicated in recurrence, metastasis, and drug resistance, making the search for diagnostic and prognostic biomarkers of the disease crucial. The objective of this systematic review was to analyze the expression of CSC biomarkers both after isolation from in vitro cell lines and from the complete cell population of patient tumor samples. A total of 228 publications from January 2011 to June 2021 was retrieved from different databases, of which 35 articles were included for analysis. The studies demonstrated significant heterogeneity in both the markers detected and the CSC isolation techniques used. ALDH was identified as a common marker in various types of sarcomas. In conclusion, the identification of CSC markers in sarcomas may facilitate the development of personalized medicine and improve treatment outcomes.

13.
Curr Drug Deliv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38099532

RESUMEN

BACKGROUND: Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. METHODS: A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. RESULTS: The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. CONCLUSION: Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.

14.
Int J Nanomedicine ; 18: 5075-5093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701822

RESUMEN

Introduction: Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods: Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results: NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion: Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Animales , Ratones , Ratones SCID , Neoplasias Pancreáticas/tratamiento farmacológico , Ácido Ascórbico/farmacología , Neoplasias Pancreáticas
15.
Eur J Pharm Biopharm ; 193: 241-253, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972906

RESUMEN

Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.


Asunto(s)
Nanofibras , Neoplasias , Humanos , Preparaciones Farmacéuticas , Polímeros , Poliésteres
16.
J Transl Med ; 10: 250, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23245659

RESUMEN

BACKGROUND: The CD133 antigen is a marker of radio- and chemo-resistant stem cell populations in glioblastoma (GBM). The O6-methylguanine DNA methyltransferase (MGMT) enzyme is related with temozolomide (TMZ) resistance. Our propose is to analyze the prognostic significance of the CD133 antigen and promoter methylation and protein expression of MGMT in a homogenous group of GBM patients uniformly treated with radiotherapy and TMZ. The possible connection between these GBM markers was also investigated. METHODS: Seventy-eight patients with GBM treated with radiotherapy combined with concomitant and adjuvant TMZ were analyzed for MGMT and CD133. MGMT gene promoter methylation was determined by methylation-specific polymerase chain reaction after bisulfite treatment. MGMT and CD133 expression was assessed immunohistochemically using an automatic quantification system. Overall and progression-free survival was calculated according to the Kaplan-Meier method. RESULTS: The MGMT gene promoter was found to be methylated in 34 patients (44.7%) and unmethylated in 42 patients (55.3%). A significant correlation was observed between MGMT promoter methylation and patients' survival. Among the unmethylated tumors, 52.4% showed low expression of MGMT and 47.6% showed high-expression. Among methylated tumors, 58.8% showed low-expression of MGMT and 41.2% showed high-expression. No correlation was found between MGMT promoter methylation and MGMT expression, or MGMT expression and survival. In contrast with recent results, CD133 expression was not a predictive marker in GBM patients. Analyses of possible correlation between CD133 expression and MGMT protein expression or MGMT promoter methylation were negative. CONCLUSIONS: Our results support the hypothesis that MGMT promoter methylation status but not MGMT expression may be a predictive biomarker in the treatment of patients with GBM. In addition, CD133 should not be used for prognostic evaluation of these patients. Future studies will be necessary to determine its clinical utility.


Asunto(s)
Antígenos CD/metabolismo , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Glicoproteínas/metabolismo , Péptidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/genética , Antígeno AC133 , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Dacarbazina/uso terapéutico , Supervivencia sin Enfermedad , Femenino , Glioblastoma/genética , Glioblastoma/patología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Reacción en Cadena de la Polimerasa , Pronóstico , Temozolomida , Resultado del Tratamiento , Adulto Joven
17.
Int J Nanomedicine ; 17: 5065-5080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345508

RESUMEN

The failure of chemotherapeutic treatment in colorectal cancer (CRC), the second most mortal cancer worldwide, is associated with several drug limitations, such as non-selective distribution, short half-life, and development of multiple resistances. One of the most promising strategies in CRC therapy is the development of delivery systems based on nanomaterials that can transport antitumor agents to the tumor site more efficiently, increasing accumulation within the tumor and thus the antitumor effect. In addition to taking advantage of the increased permeability and retention effect (EPR) of solid tumors, these nanoformulations can be conjugated with monoclonal antibodies that recognize molecular markers that are specifically over-expressed on CRC cells. Active targeting of nanoformulations reduces the adverse effects associated with the cytotoxic activity of drugs in healthy tissues, which will be of interest for improving the quality of life of cancer patients in the future. This review focuses on in vitro and in vivo studies of drug delivery nanoformulations functionalized with monoclonal antibodies for targeted therapy of CRC.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Calidad de Vida , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología
18.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36678519

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite the advances and success of current treatments (e.g., chemotherapy), there are multiple serious side effects which require the development of new treatment strategies. In recent years, fungi have gained considerable attention as a source of extracts and bioactive compounds with antitumor capabilities because of their antimicrobial and antioxidant properties and even their anti-inflammatory and antiviral activities. In the present review, a systematic search of the existing literature in four electronic databases was carried out in which the antitumor activity against CRC cells of Ascomycota fungi extracts or compounds was tested. The systematical research in the four databases resulted in a total of 883 articles. After applying exclusion and inclusion criteria, a total of 75 articles were finally studied. The order Eurotiales was the most studied (46% of the articles), and the ethyl acetate extraction was the most used method (49% of the papers). Penicillium extracts and gliotoxin and acetylgliotoxin G bioactive compounds showed the highest cytotoxic activity. This review also focuses on the action mechanisms of the extracts and bioactive compounds of fungi against CRC, which were mediated by apoptosis induction and the arrest of the cell cycle, which induces a notable reduction in the CRC cell proliferation capacity, and by the reduction in cell migration that limits their ability to produce metastasis. Thus, the ability of fungi to induce the death of cancer cells through different mechanisms may be the basis for the development of new therapies that improve the current results, especially in the more advanced stages of the CCR.

19.
Neurotox Res ; 40(6): 1645-1652, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36447028

RESUMEN

Glioblastoma multiforme is the most common malignant primary brain tumor in adults. Despite new treatments developed including immunomodulation using vaccines and cell therapies, mortality remains high due to the resistance mechanisms presented by these tumor cells and the function of the blood-brain barrier that prevents the entry of most drugs. In this context of searching for new glioblastoma therapies, the study of the existing drugs to treat neurological disorder is gaining great relevance. The aim of this study was to determine, through a preliminary in vitro study on human glioblastoma (A172, LN229), anaplastic glioma (SF268) and neuroblastoma (SK-N-SH) cell lines, the possible antitumor activity of the active principles of several drugs (levomepromazine, haloperidol, lacosamide, valproic acid, levetiracetam, glatiramer acetate, fingolimod, biperiden and dextromethorphan) with the ability to cross the blood-brain barrier and that are commonly used in neurological disorders. Results showed that levetiracetam, valproic acid, and haloperidol were able to induce a relevant synergistic antitumor effect when associated with the chemotherapy currently used in clinic (temozolomide). Regarding the mechanism of action, haloperidol, valproic acid and levomepromazine caused cell death by apoptosis, while biperiden and dextromethorphan induced autophagy. Fingolimod appeared to have anoikis-related cell death. Thus, the assayed drugs which are able to cross the blood-brain barrier could represent a possibility to improve the treatment of neural tumors, though future in vivo studies and clinical trials will be necessary to validate it.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Ácido Valproico , Levetiracetam/farmacología , Metotrimeprazina/farmacología , Metotrimeprazina/uso terapéutico , Haloperidol , Biperideno/farmacología , Biperideno/uso terapéutico , Dextrometorfano/farmacología , Dextrometorfano/uso terapéutico , Clorhidrato de Fingolimod , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis
20.
Biomed Pharmacother ; 155: 113669, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113257

RESUMEN

Pancreatic cancer (PC) is one of the tumors with the lowest survival rates due to the poor efficacy of the treatments currently used. Gemcitabine (GMZ), one of the chemotherapeutic agents employed when the tumor is unresectable, frequently fails due to the development of drug resistance. PARP1 is a relevant protein in this phenomenon and appears to be related to cancer progression in several types of tumors, including PC. To determine the relevance of PARP1 in the development and treatment of PC, we used the Panc02 cell line to generate modified PC cells with stably inhibited PARP1 expression (Panc02-L) and used GMZ, Olaparib (OLA) and GMZ+OLA as therapeutic strategies. Viability, radiosensitization, angiogenesis, migration, colony formation, TUNEL, cell cycle, multicellular tumorsphere induction and in vivo assays were performed to test the influence of PARP1 inhibition on resistance phenomena and tumor progression. We demonstrated that stable inhibition or pharmacological blockade of PARP1 using OLA-sensitized Panc02 cells against GMZ significantly decreased their IC50, reducing colony formation capacity, cell migration and vessel formation (angiogenesis) in vitro. Furthermore, in vivo analyses revealed that Panc02-L-derived (PARP1-inhibited) tumors showed less growth and lethality, and that GMZ+OLA treatment significantly reduced tumor growth. In conclusion, PARP1 inhibition, both alone and in combination with GMZ, enhances the effectiveness of this chemotherapeutic agent and represents a promising strategy for the treatment of PC.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasa-1 , Neoplasias Pancreáticas/patología , Antineoplásicos/farmacología , Gemcitabina , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA