Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 31(8): 69, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32705408

RESUMEN

In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.


Asunto(s)
Cartílago/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Biomimética , Cartílago/efectos de los fármacos , Cartílago/fisiología , Bovinos , Supervivencia Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Galvanoplastia/métodos , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Microtecnología/métodos , Poliésteres/química , Poliésteres/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
2.
J Biomed Mater Res A ; 111(7): 950-961, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36519714

RESUMEN

One of the established tissue engineering strategies relies on the fabrication of appropriate materials architectures (scaffolds) that mimic the extracellular matrix (ECM) and assist the regeneration of living tissues. Fibrous structures produced by electrospinning have been widely used as reliable ECM templates but their two-dimensional structure restricts, in part, cell infiltration and proliferation. A recent technique called thermally-induced self-agglomeration (TISA) allowed to alleviate this drawback by rearranging the 2D electrospun membranes into highly functional 3D porous-fibrous systems. Following this trend, the present research focused on preparing polycaprolactone/chitosan blends by electrospinning, to then convert them into 3D structures by TISA. By adding different amounts of chitosan, it was possible to accurately modulate the physicochemical properties of the obtained 3D nanofibrous scaffolds, leading to highly porous constructs with distinct morphologic and mechanical features. Viability and proliferation studies using adult human chondrocytes also revealed that the biocompatibility of the scaffolds was not impaired after 28 days of cell culture, highlighting their potential to be included into musculoskeletal tissue engineering applications, particularly cartilage repair.


Asunto(s)
Quitosano , Nanofibras , Adulto , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanofibras/química , Porosidad , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA