Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Proced Online ; 25(1): 26, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730545

RESUMEN

BACKGROUND: Astrocytes have recently gained attention as key contributors to the pathogenesis of neurodegenerative disorders including Parkinson's disease. To investigate human astrocytes in vitro, numerous differentiation protocols have been developed. However, the properties of the resulting glia are inconsistent, which complicates the selection of an appropriate method for a given research question. Thus, we compared two approaches for the generation of iPSC-derived astrocytes. We phenotyped glia that were obtained employing a widely used long, serum-free ("LSF") method against an in-house established short, serum-containing ("SSC") protocol which allows for the generation of astrocytes and midbrain neurons from the same precursor cells. RESULTS: We employed high-content confocal imaging and RNA sequencing to characterize the cultures. The astrocytes generated with the LSF or SSC protocols differed considerably in their properties: while the former cells were more labor-intense in their generation (5 vs 2 months), they were also more mature. This notion was strengthened by data resulting from cell type deconvolution analysis that was applied to bulk transcriptomes from the cultures to assess their similarity with human postmortem astrocytes. CONCLUSIONS: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol, when designing functional or drug discovery studies involving iPSC-derived astrocytes.

2.
Brain ; 145(3): 964-978, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34919646

RESUMEN

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease aetiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease using the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of post-mortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabelling of the same tissues. Moreover, we analysed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in idiopathic Parkinson's disease midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signalling and immunomodulatory treatments in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Glicoproteínas de Membrana/metabolismo , Mesencéfalo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
3.
Mov Disord ; 37(7): 1405-1415, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460111

RESUMEN

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , ADN Mitocondrial/genética , Humanos , Inflamación/genética , Lipopolisacáridos/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
4.
Brain ; 143(10): 3041-3051, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33029617

RESUMEN

There is increasing evidence for a role of inflammation in Parkinson's disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the release of mitochondrial DNA (mtDNA), thereby triggering inflammation. Specifically, the CGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway mitigates activation of the innate immune system, quantifiable as increased interleukin-6 (IL6) levels. However, the role of IL6 and circulating cell-free mtDNA in unaffected and affected individuals harbouring mutations in PRKN/PINK1 and idiopathic Parkinson's disease patients remain elusive. We investigated IL6, C-reactive protein, and circulating cell-free mtDNA in serum of 245 participants in two cohorts from tertiary movement disorder centres. We performed a hypothesis-driven rank-based statistical approach adjusting for multiple testing. We detected (i) elevated IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy control subjects in a German cohort, supporting the concept of a role for inflammation in PRKN/PINK1-linked Parkinson's disease. In addition, the comparison of patients with biallelic and heterozygous mutations in PRKN/PINK1 suggests a gene dosage effect. The differences in IL6 levels were validated in a second independent Italian cohort; (ii) a correlation between IL6 levels and disease duration in carriers of PRKN/PINK1 mutations, while no such association was observed for idiopathic Parkinson's disease patients. These results highlight the potential of IL6 as progression marker in Parkinson's disease due to PRKN/PINK1 mutations; (iii) increased circulating cell-free mtDNA serum levels in both patients with biallelic or with heterozygous PRKN/PINK1 mutations compared to idiopathic Parkinson's disease, which is in line with previous findings in murine models. By contrast, circulating cell-free mtDNA concentrations in unaffected heterozygous carriers of PRKN/PINK1 mutations were comparable to control levels; and (iv) that circulating cell-free mtDNA levels have good predictive potential to discriminate between idiopathic Parkinson's disease and Parkinson's disease linked to heterozygous PRKN/PINK1 mutations, providing functional evidence for a role of heterozygous mutations in PRKN or PINK1 as Parkinson's disease risk factor. Taken together, our study further implicates inflammation due to impaired mitophagy and subsequent mtDNA release in the pathogenesis of PRKN/PINK1-linked Parkinson's disease. In individuals carrying mutations in PRKN/PINK1, IL6 and circulating cell-free mtDNA levels may serve as markers of Parkinson's disease state and progression, respectively. Finally, our study suggests that targeting the immune system with anti-inflammatory medication holds the potential to influence the disease course of Parkinson's disease, at least in this subset of patients.


Asunto(s)
ADN Mitocondrial/sangre , Interleucina-6/sangre , Trastornos Parkinsonianos/sangre , Trastornos Parkinsonianos/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Biomarcadores/sangre , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Inflamación/genética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
5.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3444-3455, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27614149

RESUMEN

BACKGROUND: Pluripotent stem cells promise innovative approaches for enduring diseases, including disease modeling and drug screens. Accordingly, efforts have been undertaken in order to efficiently reprogram somatic cells to pluripotency, and then differentiate them into pure cultures of specific cell lineages. However, the latter step remains mostly elusive, and, in order to better control differentiation and design more efficient differentiation strategies, the cellular mechanisms behind different pluripotency stages that mimic embryonic development are being actively addressed. SCOPE OF REVIEW: Metabolism is one of many cellular processes that are in constant adjustment during mammalian embryo development, as well as in pluripotent stem cell establishment and differentiation. Thus, the role of molecular pathways known to be involved in metabolic control has been recently addressed as potential modulators of pluripotency. Notably, mammalian sirtuins have emerged as master regulators of many cellular processes, including epigenetics and metabolism. In this review we address the potential developmental role of sirtuins, with a particular focus on sirtuin 1. MAJOR CONCLUSIONS: This review focuses on the most recent studies implying sirtuins as regulators of pluripotency and differentiation of pluripotent stem cells, highlighting metabolic control as associated with the control of pluripotency. It notably stresses the role of sirtuin 1 in these processes, creating parallels between in vitro manipulations and developmental cues. GENERAL SIGNIFICANCE: Using metabolic control in order to determine cellular fate, both in terms of somatic cell reprogramming to pluripotency and pluripotent stem cell differentiation, is a topic of increasing interest, and sirtuins are key players in these efforts.


Asunto(s)
Diferenciación Celular , Sirtuinas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Mitocondrias/metabolismo , Modelos Biológicos
6.
Curr Opin Neurobiol ; 80: 102720, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023495

RESUMEN

Mutations in PRKN cause the second most common genetic form of Parkinson's disease (PD)-a debilitating movement disorder that is on the rise due to population aging in the industrial world. PRKN codes for an E3 ubiquitin ligase that has been well established as a key regulator of mitophagy. Together with PTEN-induced kinase 1 (PINK1), Parkin controls the lysosomal degradation of depolarized mitochondria. But Parkin's functions go well beyond mitochondrial clearance: the versatile protein is involved in mitochondria-derived vesicle formation, cellular metabolism, calcium homeostasis, mitochondrial DNA maintenance, mitochondrial biogenesis, and apoptosis induction. Moreover, Parkin can act as a modulator of different inflammatory pathways. In the current review, we summarize the latest literature concerning the diverse roles of Parkin in maintaining a healthy mitochondrial pool. Moreover, we discuss how these recent discoveries may translate into personalized therapeutic approaches not only for PRKN-PD patients but also for a subset of idiopathic cases.


Asunto(s)
Enfermedad de Parkinson , Proteínas Quinasas , Humanos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mitocondrias/metabolismo
7.
Front Endocrinol (Lausanne) ; 12: 668517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025580

RESUMEN

Converging evidence made clear that declining brain energetics contribute to aging and are implicated in the initiation and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Indeed, both pathologies involve instances of hypometabolism of glucose and oxygen in the brain causing mitochondrial dysfunction, energetic failure and oxidative stress. Importantly, recent evidence suggests that astrocytes, which play a key role in supporting neuronal function and metabolism, might contribute to the development of neurodegenerative diseases. Therefore, exploring how the neuro-supportive role of astrocytes may be impaired in the context of these disorders has great therapeutic potential. In the following, we will discuss some of the so far identified features underlining the astrocyte-neuron metabolic crosstalk. Thereby, special focus will be given to the role of mitochondria. Furthermore, we will report on recent advancements concerning iPSC-derived models used to unravel the metabolic contribution of astrocytes to neuronal demise. Finally, we discuss how mitochondrial dysfunction in astrocytes could contribute to inflammatory signaling in neurodegenerative diseases.


Asunto(s)
Envejecimiento , Astrocitos/patología , Mitocondrias/patología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Estrés Oxidativo , Animales , Astrocitos/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
8.
J Parkinsons Dis ; 11(1): 45-60, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33074190

RESUMEN

Mitochondrial dysfunction represents a well-established player in the pathogenesis of both monogenic and idiopathic Parkinson's disease (PD). Initially originating from the observation that mitochondrial toxins cause PD, findings from genetic PD supported a contribution of mitochondrial dysfunction to the disease. Here, proteins encoded by the autosomal recessively inherited PD genes Parkin, PTEN-induced kinase 1 (PINK1), and DJ-1 are involved in mitochondrial pathways. Additional evidence for mitochondrial dysfunction stems from models of autosomal-dominant PD due to mutations in alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2). Moreover, patients harboring alterations in mitochondrial polymerase gamma (POLG) often exhibit signs of parkinsonism. While some molecular studies suggest that mitochondrial dysfunction is a primary event in PD, others speculate that it is the result of impaired mitochondrial clearance. Most recent research even implicated damage-associated molecular patterns released from non-degraded mitochondria in neuroinflammatory processes in PD. Here, we summarize the manifold literature dealing with mitochondria in the context of PD. Moreover, in light of recent advances in the field of personalized medicine, patient stratification according to the degree of mitochondrial impairment followed by mitochondrial enhancement therapy may hold potential for at least a subset of genetic and idiopathic PD cases. Thus, in the second part of this review, we discuss therapeutic approaches targeting mitochondrial dysfunction with the aim to prevent or delay neurodegeneration in PD.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Parkinson , Animales , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo
9.
Front Aging Neurosci ; 13: 713084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650424

RESUMEN

Objective: To establish a workflow for mitochondrial DNA (mtDNA) CpG methylation using Nanopore whole-genome sequencing and perform first pilot experiments on affected Parkin biallelic mutation carriers (Parkin-PD) and healthy controls. Background: Mitochondria, including mtDNA, are established key players in Parkinson's disease (PD) pathogenesis. Mutations in Parkin, essential for degradation of damaged mitochondria, cause early-onset PD. However, mtDNA methylation and its implication in PD is understudied. Herein, we establish a workflow using Nanopore sequencing to directly detect mtDNA CpG methylation and compare mtDNA methylation between Parkin-related PD and healthy individuals. Methods: To obtain mtDNA, whole-genome Nanopore sequencing was performed on blood-derived from five Parkin-PD and three control subjects. In addition, induced pluripotent stem cell (iPSC)-derived midbrain neurons from four of these patients with PD and the three control subjects were investigated. The workflow was validated, using methylated and unmethylated 897 bp synthetic DNA samples at different dilution ratios (0, 50, 100% methylation) and mtDNA without methylation. MtDNA CpG methylation frequency (MF) was detected using Nanopolish and Megalodon. Results: Across all blood-derived samples, we obtained a mean coverage of 250.3X (SD ± 80.5X) and across all neuron-derived samples 830X (SD ± 465X) of the mitochondrial genome. We detected overall low-level CpG methylation from the blood-derived DNA (mean MF ± SD = 0.029 ± 0.041) and neuron-derived DNA (mean MF ± SD = 0.019 ± 0.035). Validation of the workflow, using synthetic DNA samples showed that highly methylated DNA molecules were prone to lower Guppy Phred quality scores and thereby more likely to fail Guppy base-calling. CpG methylation in blood- and neuron-derived DNA was significantly lower in Parkin-PD compared to controls (Mann-Whitney U-test p < 0.05). Conclusion: Nanopore sequencing is a useful method to investigate mtDNA methylation architecture, including Guppy-failed reads is of importance when investigating highly methylated sites. We present a mtDNA methylation workflow and suggest methylation variability across different tissues and between Parkin-PD patients and controls as an initial model to investigate.

10.
Front Cell Dev Biol ; 9: 740758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805149

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease with unknown cause in the majority of patients, who are therefore considered "idiopathic" (IPD). PD predominantly affects dopaminergic neurons in the substantia nigra pars compacta (SNpc), yet the pathology is not limited to this cell type. Advancing age is considered the main risk factor for the development of IPD and greatly influences the function of microglia, the immune cells of the brain. With increasing age, microglia become dysfunctional and release pro-inflammatory factors into the extracellular space, which promote neuronal cell death. Accordingly, neuroinflammation has also been described as a feature of PD. So far, studies exploring inflammatory pathways in IPD patient samples have primarily focused on blood-derived immune cells or brain sections, but rarely investigated patient microglia in vitro. Accordingly, we decided to explore the contribution of microglia to IPD in a comparative manner using, both, iPSC-derived cultures and postmortem tissue. Our meta-analysis of published RNAseq datasets indicated an upregulation of IL10 and IL1B in nigral tissue from IPD patients. We observed increased expression levels of these cytokines in microglia compared to neurons using our single-cell midbrain atlas. Moreover, IL10 and IL1B were upregulated in IPD compared to control microglia. Next, to validate these findings in vitro, we generated IPD patient microglia from iPSCs using an established differentiation protocol. IPD microglia were more readily primed as indicated by elevated IL1B and IL10 gene expression and higher mRNA and protein levels of NLRP3 after LPS treatment. In addition, IPD microglia had higher phagocytic capacity under basal conditions-a phenotype that was further exacerbated upon stimulation with LPS, suggesting an aberrant microglial function. Our results demonstrate the significance of microglia as the key player in the neuroinflammation process in IPD. While our study highlights the importance of microglia-mediated inflammatory signaling in IPD, further investigations will be needed to explore particular disease mechanisms in these cells.

11.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165760, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151634

RESUMEN

Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Metabolismo Energético/genética , Glucólisis/genética , Humanos , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/patología , Fosforilación Oxidativa
12.
Front Neurol ; 11: 881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982917

RESUMEN

Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson's disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD-) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD- (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis-possibly as a consequence of impaired mitophagy-in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers.

13.
Food Chem Toxicol ; 87: 148-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26683311

RESUMEN

Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 µM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 µM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS).


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Quempferoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Quempferoles/administración & dosificación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Necrosis , Superóxidos/metabolismo
14.
Data Brief ; 7: 1190-1195, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27761502

RESUMEN

The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.

15.
PLoS One ; 10(8): e0135617, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266544

RESUMEN

BACKGROUND: Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. CONCLUSIONS/FINDINGS: Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Piruvatos/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Células Madre Embrionarias/citología , Citometría de Flujo , Glucólisis/efectos de los fármacos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos
16.
PLoS One ; 10(7): e0131663, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147621

RESUMEN

INTRODUCTION: The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. METHODS/RESULTS: In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. CONCLUSIONS: DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic profile, by using some of the signaling pathways found in the latter cells.


Asunto(s)
Ácido Dicloroacético/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Glucólisis , Ratones , Fosforilación Oxidativa
17.
Hum Reprod Update ; 20(6): 924-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25013216

RESUMEN

BACKGROUND: Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. METHODS: A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. RESULTS: Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. CONCLUSIONS: There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic.


Asunto(s)
Desarrollo Embrionario/fisiología , Gametogénesis/fisiología , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/fisiología , Transformación Celular Neoplásica , Metabolismo Energético/fisiología , Glucólisis/fisiología , Humanos , Redes y Vías Metabólicas , Mitocondrias/fisiología , Neoplasias , Fosforilación Oxidativa , Células Madre Pluripotentes/citología , Espermatogénesis/fisiología
18.
PLoS One ; 8(12): e82095, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312632

RESUMEN

The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.


Asunto(s)
Antimicina A/farmacología , Diferenciación Celular/efectos de los fármacos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Células Madre Embrionarias/citología , Inhibidores Enzimáticos/farmacología , Neuronas/citología , Células Madre Pluripotentes/citología , Nucleótidos de Adenina/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
19.
Cardiovasc Toxicol ; 11(3): 191-203, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21455642

RESUMEN

H9c2 cells are used as a surrogate for cardiac cells in several toxicological studies, which are usually performed with cells in their undifferentiated state, raising questions on the applicability of the results to adult cardiomyocytes. Since H9c2 myoblasts have the capacity to differentiate into skeletal and cardiac muscle cells under different conditions, the hypothesis of the present work was that cells in different differentiation states differ in their susceptibility to toxicants. In order to test the hypothesis, the effects of the cardiotoxicant isoproterenol (ISO) were investigated. The present work demonstrates that differentiated H9c2 cells are more susceptible to ISO toxicity. Cellular content of beta(1)-adrenergic receptors (AR), beta(3)-AR, and calcineurin is decreased as cells differentiate, as opposed to the content on the mitochondrial voltage-dependent anion channel (VDAC) and phosphorylated p38-MAPK, which increase. After ISO treatment, the pro-apoptotic protein Bax increases in all experimental groups, although only undifferentiated myoblasts up-regulate the anti-apoptotic Bcl-2. Calcineurin is decreased in differentiated H9c2 cells, which suggests an important role against ISO-induced cell death. The results indicate that the differentiation state of H9c2 myoblasts influence ISO toxicity, which may involve calcineurin, p38-MAPK, and Bax/Bcl-2 alterations. The data also provide new insights into cardiovascular toxicology during early development.


Asunto(s)
Agonistas Adrenérgicos beta/toxicidad , Diferenciación Celular , Isoproterenol/toxicidad , Mioblastos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Calcineurina/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Receptores Adrenérgicos beta 1/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 3/efectos de los fármacos , Receptores Adrenérgicos beta 3/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Cardiovasc Toxicol ; 11(2): 180-90, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21431998

RESUMEN

H9c2 cells, derived from the ventricular part of an E13 BDIX rat heart, possess a proliferative and relatively undifferentiated phenotype but can be readily directed to differentiate under reduced serum conditions originating cells presenting muscle features. Skeletal or cardiac phenotypes can be originated depending on whether or not serum reduction is accompanied by a daily treatment with all-trans-retinoic acid. In the present study, we aimed to characterize and compare the metabolic profile of H9c2 cells at various differentiation states, correlating the differences between different populations with muscle-specific development. We determined that H9c2 myoblasts remodel their metabolism upon differentiation, with undifferentiated cells more reliant on glycolysis, as demonstrated by higher lactate production rates. Differentiated cells adopted a more oxidative metabolism with better coupling between the glycolytic and oxidative pathways, which is indicative of a metabolic evolvement toward a higher energetic efficiency state. Our findings emphasize the metabolic differences between differentiated and undifferentiated H9c2 cells and raise caution on how to adequately select the H9c2 differentiation state that will act as the better model for the design of experimental studies.


Asunto(s)
Diferenciación Celular/fisiología , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Línea Celular , Glucólisis/fisiología , Ácido Láctico/metabolismo , Consumo de Oxígeno/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA