Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2215585120, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787353

RESUMEN

Cellular organisms regulate electrolyte composition in the cytosol to optimize intracellular molecular interactions at the same time as balancing external osmotic pressure. While osmotic pressure can be tuned using multiple ionic, zwitterionic, and nonionic solutes, interactions between proteins and other macromolecules are sensitive to the precise composition of the medium. Nonetheless, the roles of individual ions and nonionic solutes in mediating cellular interactions remain relatively unexplored, and standard buffer solutions used in laboratory studies often contain only a few simple salts. Here, we report on model experiments investigating the combined effect of ionic and zwitterionic solutes on interaction forces across electrolytes, revealing a clear role for zwitterions in modifying interactions compared to simple salt solutions. First, we find that zwitterions act to disrupt water layering at interfaces, leading to smoothed interaction potentials. Second, we find that zwitterions strengthen electrostatic repulsions by enhancing effective surface charge. Third, zwitterions enhance the effective dielectric permittivity of the solution, and this "dielectricizer" effect extends the range of electrostatic repulsions compared to solutions without zwitterion present. The latter two effects are likely important in stabilizing proteins and other macromolecules when external osmotic and mechanical pressure are very high and simple ionic solutes alone would lead to collapse.

2.
Rep Prog Phys ; 87(4)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38382100

RESUMEN

Over the last half-century, direct measurements of surface forces have been instrumental in the exploration of a multitude of phenomena in liquid, soft, and biological matter. Measurements of van der Waals interactions, electrostatic interactions, hydrophobic interactions, structural forces, depletion forces, and many other effects have checked and challenged theoretical predictions and motivated new models and understanding. The gold-standard instrument for these measurements is thesurface force balance(SFB), orsurface forces apparatus, where interferometry is used to detect the interaction force and distance between two atomically smooth planes, with 0.1 nm resolution, over separations from about 1 µm down to contact. The measured interaction forcevs.distance gives access to the free energy of interaction across the fluid film; a fundamental quantity whose general form and subtle features reveal the underlying molecular and surface interactions and their variation. Motivated by new challenges in emerging fields of research, such as energy storage, biomaterials, non-equilibrium and driven systems, innovations to the apparatus are now clearing the way for new discoveries. It is now possible to measure interaction forces (and free energies) with control of electric field, surface potential, surface chemistry; to measure time-dependent effects; and to determine structurein situ. Here, we provide an overview the operating principles and capabilities of the SFB with particular focus on the recent developments and future possibilities of this remarkable technique.

3.
Langmuir ; 40(11): 5695-5700, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38444101

RESUMEN

Deep eutectic solvents (DESs) show promise as boundary lubricants between sliding surfaces, taking advantage of their physical stability, chemical stability, and tunability. Here, we study friction forces across nanofilms of two archetypal DES mixtures: choline chloride + ethylene glycol and choline chloride + glycerol. Using a surface force balance, we control the film thickness (to subnanometer precision) and determine the friction force simultaneously. Measurements are made at different mole fractions of the choline chloride salt and the molecular solvent, allowing us to determine the role of each species in the observed behavior. We find that the nature of the molecular solvent is dominant in determining the lubrication behavior, while the fraction of ChCl is relatively less important. By analyzing the steps in friction and the gradient of friction with load as the layers squeeze away from between the surfaces, we learn various mechanistic aspects of lubrication across the DES nanofilms of relevance to design and optimization of these promising fluids.

4.
Faraday Discuss ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045840

RESUMEN

Experimental measurements of interactions in ionic liquids and concentrated electrolytes over the past decade or so have revealed simultaneous monotonic and oscillatory decay modes. These observations have been hard to interpret using classical theories, which typically allow for just one electrostatic decay mode in electrolytes. Meanwhile, substantial progress in the theoretical description of dielectric response and ion correlations in electrolytes has illuminated the deep connection between density and charge correlations and the multiplicity of decay modes characterising a liquid electrolyte. The challenge in front of us is to build connections between the theoretical expressions for a pair of correlation functions and the directly measured free energy of interaction between macroscopic surfaces in experiments. Towards this aim, we here present measurements and analysis of the interactions between macroscopic bodies across a fluid mixture of two ionic liquids of widely diverging ionic size. The measured oscillatory interaction forces in the liquid mixtures are significantly more complex than for either of the pure ionic liquids, but can be fitted to a superposition of two oscillatory and one monotonic mode with parameters matching those of the pure liquids. We discuss this empirical finding, which hints at a kind of wave mechanics for interactions in liquid matter.

5.
Nat Mater ; 21(8): 848-858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35761059

RESUMEN

Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction-that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.


Asunto(s)
Líquidos Iónicos , Fricción , Lubricantes , Simulación de Dinámica Molecular
6.
Faraday Discuss ; 246(0): 370-386, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37458200

RESUMEN

The observation of long-range interactions across ionic liquids and highly concentrated electrolytes, extending far beyond the Debye-Hückel prediction and beyond the range predicted in liquid state theory, has been called 'anomalous underscreening'. A number of theoretical and experimental works have explored this phenomenon over recent years, although its origin is not yet fully understood. Most of the experimental studies of anomalous underscreening until now involved aprotic ionic liquids, and so it is of interest to explore interactions in protic ionic liquids where the distribution of charge in the fluid is different in nature. Here we present direct measurements of the interaction force as a function of separation distance, measured using a surface force balance, across solutions of a protic ionic liquid ethylammonium nitrate (EAN) and its mixtures with water over a range of volume fractions from 10 vol% to 100 vol% EAN. The results reveal intricate details about near-surface ordering and dynamics at the EAN-mica interface as well as anomalous underscreening consistent with that observed in the past with aprotic ionic liquids.

7.
Langmuir ; 38(15): 4657-4668, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35395153

RESUMEN

Surface reconstruction is the rearrangement of atoms or molecules at an interface in response to a stimulus, driven by lowering the overall free energy of the system. Perfluoroalkyl acrylate polymers with short side chains undergo reconstruction at room temperature when exposed to water. Here, we use contact angle aging to examine the liquid- and temperature- dependency of surface reconstruction of plasma polymerized perfluoroalkyl acrylates. We use a first order kinetic model to examine the dynamics of reconstructive processes. Our results show that, above the bulk melting point of the polymers, the contact angles of both polar and nonpolar (hydrocarbon) liquids show a time dependency well fit by the model. We conclude that surface reconstruction can be driven by the preferential segregation of hydrocarbon and fluorocarbon moieties as well as by polar interactions. This has implications in terms of using fluorocarbons to design oleophobic surfaces (and vice versa) and in terms of designing fluorocarbon and/or hydrocarbon surfaces with switchable wettability.

8.
Proc Natl Acad Sci U S A ; 116(51): 25418-25423, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801880

RESUMEN

Hydrocarbon films confined between smooth mica surfaces have long provided an experimental playground for model studies of structure and dynamics of confined liquids. However, fundamental questions regarding the phase behavior and shear properties in this simple system remain unsolved. With ultrasensitive resolution in film thickness and shear stress, and control over the crystallographic alignment of the confining surfaces, we here investigate the shear forces transmitted across nanoscale films of dodecane down to a single molecular layer. We resolve the conditions under which liquid-solid phase transitions occur and explain friction coefficients spanning several orders of magnitude. We find that commensurate surface alignment and presence of water at the interfaces each lead to moderate or high friction, whereas friction coefficients down to [Formula: see text] are observed for a single molecular layer of dodecane trapped between crystallographically misaligned dry surfaces. This ultralow friction is attributed to sliding at the incommensurate interface between one of the mica surfaces and the laterally ordered solid molecular film, reconciling previous interpretations.

9.
Phys Chem Chem Phys ; 22(2): 455-466, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31781711

RESUMEN

When confined at the nanoscale between smooth surfaces, an ionic liquid forms a structured film responding to shear in a quantized way, i.e., with a friction coefficient indexed by the number of layers in the gap. So far, only a few experiments have been performed to study this phenomenon, because of the delicate nature of the measurements. We propose a new methodology to measure friction with a surface force balance, based on the simultaneous application of normal and lateral motions to the surfaces, allowing for a more precise, comprehensive and rapid determination of the friction response. We report on proof-of-concept experiments with an ionic liquid confined between mica surfaces in dry or wet conditions, showing the phenomenon of quantized friction with an unprecedented resolution. First, we show that the variation of the kinetic friction force with the applied load for a given layer is not linear, but can be quantitatively described by two additive contributions that are respectively proportional to the load and to the contact area. Then, we find that humidity improves the resistance of the layers to be squeezed-out and extends the range of loads in which the liquid behaves as a superlubricant, interpreted by an enhanced dissolution of the potassium ions on the mica leading to a larger surface charge. There, we note a liquid-like friction behavior, and observe in certain conditions a clear variation of the kinetic friction force over two decades of shearing velocities, that does not obey a simple Arrhenius dynamics.

10.
Phys Chem Chem Phys ; 22(36): 20253-20264, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966447

RESUMEN

We report surface force balance measurements of the normal surface force and friction between two mica surfaces separated by a nanofilm of the deep eutectic solvent ethaline. Ethaline, a 1 : 2 mixture of choline chloride and ethylene glycol, was studied under dry conditions, under ambient conditions and with added water, revealing surface structural layers and quantised frictional response highly sensitive to water content, including regions of super-lubric behaviour under dry conditions and with added water. We also report exceptionally long-ranged electrostatic repulsion far in excess of that predicted by Debye-Hückel theory for a system with such high electrolyte content, consistent with previously reported observations of "underscreening" in ionic liquid and concentrated aqueous electrolyte systems [Smith et al., J. Phys. Chem. Lett., 2016, 7(12), 2157].

11.
Langmuir ; 35(48): 15444-15450, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31282683

RESUMEN

We report measurements of the normal surface forces and friction forces between two mica surfaces separated by a nanofilm of dicationic ionic liquid using a Surface Force Balance. The dicationic ionic liquid 1,10-bis(3-methylimidazolium)decane di[bis(trifluoromethylsulfonyl)imide] forms a layered structure in nanoconfinement, revealed by oscillatory structural forces. Friction measurements performed at different film thicknesses display quantized friction, i.e., discontinuities in friction as layers are squeezed out and friction coefficients dependent on the number of liquid layers confined between the surfaces. The details of the friction traces indicate a liquidlike film, and, surprisingly, decreasing friction with increasing water content; we discuss possible mechanisms underlying these observations. This latter trait may be helpful in applications where ionic liquid lubricants cannot be insulated against humid environments.

13.
Soft Matter ; 15(21): 4255-4265, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31020308

RESUMEN

We explore the force generation and surface interactions arising when electric fields are applied across fluid films. Using a surface force balance (SFB) we measure directly the force between two electrodes in crossed-cylinder geometry across dielectric and electrolytic fluids. In the case of dielectric films the field between the electrodes exerts a force which can be well explained using classic expressions and with no fitting parameters. However when the electrodes are separated by a film of electrolyte, an alternating electric field induces a force which diverges substantially from the calculated static response of the electrolyte. The magnitude of the force is larger than predicted, and the interaction can switch from attractive to repulsive. Furthermore, the approach to steady state in electrolyte takes place over 102-103 s which is very slow compared to both the charging and viscous timescales of the system. The non-trivial electrolyte response in AC electric fields, measured here directly, is likely to underlie several recent reports of unexpected and bifurcating forces driving colloids in AC fields. Our measurements suggest ways to control colloidal and soft matter using electric fields, as well as providing a direct measure of the length- and time-scales relevant in AC electrochemical and electrokinetic systems.

14.
Soft Matter ; 15(24): 4905-4914, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31166360

RESUMEN

Using a surface force apparatus, a cholesteric liquid crystal was confined between two crossed cylindrical surfaces that induced strong planar anchoring and normal alignment of the chiral helix. The film thickness and total twist angle of the chiral molecular structure were simultaneously measured using multiple-beam optical interference. As the film thickness was increased and the chiral structure deformed, the twist angle remained almost unchanged until discontinuous changes occurred at critical distances that were equally spaced by one cholesteric half-pitch length. Structural deformations generated oscillatory elastic forces with periodically spaced maxima corresponding to twist transitions. These findings were reproduced using an equilibrium model of cholesteric confinement and force generation. The analysis indicates that the strength of the azimuthal surface anchoring on mica is high, exceeding 0.2 mJ m-2.


Asunto(s)
Cristales Líquidos/química , Diseño de Equipo , Fenómenos Mecánicos
15.
Faraday Discuss ; 206: 427-442, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28933495

RESUMEN

Many applications of ionic liquids involve their mixtures with neutral molecular solvents. The chemical physics of these high-concentration electrolytes, in particular at interfaces, still holds many challenges. In this contribution we begin to unravel the relationship between measurements of structural ('solvation') forces in mixtures of ionic liquid with polar solvent and the corresponding structure determined by molecular dynamics simulations of the same mixtures. In order to make the quantitative link between experiments with mica surfaces and simulations with fixed-charge surfaces, we present an experimental procedure for determining the effective surface charge on mica in ionic liquid. We find that a structural cross-over recently inferred from force measurements appears to be supported by the simulations: at the cross-over, the charge-oscillatory structure switches to charge-monotonic, and solvent layering becomes dominant. Finally, we map out a phase diagram in composition-surface charge space delineating regions of charge-oscillatory interfacial structure and regions of charge-monotonic decay. We note that these features of structure and oscillatory forces are distinct from (acting simultaneously with) the recently reported longer range monotonic forces arising from anomalously long bulk screening lengths in high-concentration electrolytes.

20.
J Chem Phys ; 148(19): 193808, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307208

RESUMEN

The structure of the ionic liquid 1-decyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide, [C10C1Pyrr][NTf2], has been probed using Molecular Dynamics (MD) simulations. The simulations endeavour to model the behaviour of the ionic liquid in bulk isotropic conditions and also at interfaces and in confinement. The MD results have been confronted and validated with scattering and surface force experiments reported in the literature. The calculated structure factors, distribution functions, and density profiles were able to provide molecular and mechanistic insights into the properties of these long chain ionic liquids under different conditions, in particular those that lead to the formation of multi-layered ionic liquid films in confinement. Other properties inaccessible to experiment such as in-plane structures and relaxation rates within the films have also been analysed. Overall the work contributes structural and dynamic information relevant to many applications of ionic liquids with long alkyl chains, ranging from nanoparticle synthesis to lubrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA