Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Biol ; 19(10): e3001408, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695132

RESUMEN

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Asunto(s)
Eritrocitos/parasitología , Ácido Mirístico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Eritrocitos/efectos de los fármacos , Lipoilación/efectos de los fármacos , Merozoítos/efectos de los fármacos , Merozoítos/metabolismo , Parásitos/efectos de los fármacos , Parásitos/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/ultraestructura , Solubilidad , Especificidad por Sustrato/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975947

RESUMEN

Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.


Asunto(s)
Antimaláricos/farmacología , Ácidos Borónicos/farmacología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Subtilisinas/química , Antimaláricos/síntesis química , Sitios de Unión , Ácidos Borónicos/síntesis química , Diseño de Fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Humanos , Cinética , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/fisiología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Péptidos/síntesis química , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Subtilisinas/antagonistas & inhibidores , Subtilisinas/genética , Subtilisinas/metabolismo , Termodinámica
3.
PLoS Biol ; 17(2): e3000154, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30794532

RESUMEN

Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase ß (PDEß) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEß-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEß plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transducción de Señal/genética , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eritrocitos/parasitología , Regulación del Desarrollo de la Expresión Génica , Humanos , Hidrólisis , Merozoítos/enzimología , Merozoítos/genética , Merozoítos/crecimiento & desarrollo , Fosfoproteínas/clasificación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Esquizontes/enzimología , Esquizontes/genética , Esquizontes/crecimiento & desarrollo , Factores de Tiempo
4.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31075098

RESUMEN

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Asunto(s)
AMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Parásitos/metabolismo , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Parásitos/ultraestructura , Fosfoproteínas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
5.
PLoS Pathog ; 15(9): e1008049, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491036

RESUMEN

The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/inmunología , Humanos , Malaria/metabolismo , Malaria Falciparum/metabolismo , Proteínas de la Membrana/metabolismo , Merozoítos/metabolismo , Orgánulos/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas/fisiología
6.
J Biol Chem ; 291(27): 14285-14299, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226583

RESUMEN

Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.


Asunto(s)
Antígenos de Protozoos/metabolismo , Inmunoglobulina M/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Humanos , Unión Proteica
7.
Malar J ; 14: 238, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26045295

RESUMEN

BACKGROUND: Plasmodium parasites typically elicit a non-sterile but protective immune response in human host populations, suggesting that the parasites actively modulate normal immunological mechanisms. P-selectin is a cell surface receptor expressed in mammals, that is a known component of the inflammatory response against pathogens and has been previously identified as a host factor that influences malaria-associated pathology both in human patients and rodent infection models. METHODS: To better understand the molecular mechanisms underlying the involvement of P-selectin in the pathogenesis of malaria, a systematic extracellular protein interaction screen was used to identify Plasmodium falciparum merozoite surface protein 7 (MSP7) as a binding partner of human P-selectin. This interaction, and those occurring between P-selectin and Plasmodium MSP7 homologues, was characterized biochemically. RESULTS: Plasmodium falciparum MSP7 and P-selectin were shown to bind each other directly via the N-terminus of PfMSP7 and the P-selectin C-type lectin and EGF-like domains. Orthologous proteins in the murine parasite Plasmodium berghei (PbMSRP1 and PbMSRP2) and mouse P-selectin also interacted. Finally, P-selectin, when complexed with MSP7, could no longer bind to its endogenous carbohydrate ligand, Sialyl-Lewis(X). CONCLUSIONS: Novel interactions were identified between Plasmodium MSP7 protein family members and host P-selectin receptors. Since PfMSP7 could prevent interactions between P-selectin and its leukocyte ligands, these results provide a possible mechanism for the known immunomodulatory effects of both MSP7 and P-selectin in malaria infection models.


Asunto(s)
Lectinas Tipo C/metabolismo , Proteínas de la Membrana/genética , Oligosacáridos/metabolismo , Selectina-P/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Ratones , Selectina-P/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antígeno Sialil Lewis X
8.
Malar J ; 14: 88, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25889240

RESUMEN

BACKGROUND: Invasion of host erythrocytes by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion involves recognition events between erythrocyte receptors and ligands on the merozoite, the invasive blood form of the parasite. Identifying and characterizing host-parasite interactions is impeded by the biochemical challenges of working with membrane-embedded glycoprotein receptors. For example, the interaction between P. falciparum erythrocyte binding antigen 175 (PfEBA175) and glycophorin A (GYPA) depends on post-translational modifications that are not easily added in recombinant expression systems, and the use of native GYPA is limited by the hydrophobic transmembrane region, making it difficult to biochemically manipulate. It would, therefore, be desirable to perform quantitative binding assays with receptors embedded within the membranes of intact human erythrocytes. METHODS: The extracellular region of GYPA was over-expressed as a soluble protein in HEK293E cells. This protein was characterized, sialylated and evaluated for binding to the PfEBA175 protein. The label-free and free-solution assay, backscattering interferometry (BSI), was used to perform binding assays of two well-characterized P. falciparum invasion ligands to intact unmodified human erythrocytes. RESULTS: Findings indicate that the post-translational modifications present on native GYPA are required for it to bind recombinant PfEBA175 and that these modifications cannot be recapitulated in vitro using mammalian overexpression methods. Here, BSI was used to obtain quantitative, high fidelity interaction determinations on intact, unmodified erythrocytes. Using BSI and purified recombinant proteins constituting the entire ectodomains of the P. falciparum merozoite ligands PfEBA175 and PfRH5, K Ds of 1.1 µM and 50 nM were measured for the PfRH5-BSG and PfEBA175-GYPA interactions, respectively, in good agreement with previous biophysical measurements of these interactions. CONCLUSIONS: These results demonstrate that BSI can be used to detect and quantify the interactions of two merozoite invasion ligands with their receptors on intact human erythrocytes. BSI assays were performed on unlabelled, free-solution proteins in their native environment, requiring only nanomoles of recombinant protein. This study suggests that BSI can be used to investigate host-parasite protein interactions without the limitations of other assay platforms, and therefore represents a valuable new method to investigate the molecular mechanisms involved in erythrocyte invasion by P. falciparum.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas Portadoras/metabolismo , Eritrocitos/parasitología , Glicoforinas/metabolismo , Interacciones Huésped-Parásitos , Plasmodium falciparum/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/genética , Proteínas Portadoras/genética , Eritrocitos/metabolismo , Glicoforinas/genética , Interferometría , Malaria Falciparum/parasitología , Malaria Falciparum/fisiopatología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
mBio ; 12(2)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33688001

RESUMEN

Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.


Asunto(s)
Antígenos de Protozoos/genética , Eritrocitos/parasitología , Merozoítos/genética , Plasmodium falciparum/fisiología , Proteínas Protozoarias/genética , Esquizontes/fisiología , Antígenos de Protozoos/metabolismo , División Celular , Humanos , Merozoítos/química , Fosforilación , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Estudios Prospectivos , Proteínas Protozoarias/metabolismo
10.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762339

RESUMEN

Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.


Asunto(s)
Malaria , Parásitos , Animales , Calcio/metabolismo , Canales de Calcio , Gametogénesis , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
11.
Curr Opin Microbiol ; 58: 69-74, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33032143

RESUMEN

Cyclic adenosine monophosphate (cAMP) is an important signalling molecule across evolution, but until recently there was little information on its role in malaria parasites. Advances in gene editing - in particular conditional genetic approaches and mass spectrometry have paved the way for characterisation of the key components of the cAMP signalling pathway in malaria parasites. This has revealed that cAMP signalling plays a critical role in invasion of host red blood cells by Plasmodium falciparum merozoites through regulating the phosphorylation of key parasite proteins by the cAMP-dependent protein kinase (PKA). These insights will help us to investigate parasite cAMP signalling as a target for novel antimalarial drugs.


Asunto(s)
AMP Cíclico/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Malaria Falciparum/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal
12.
mBio ; 9(4)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970464

RESUMEN

Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress.


Asunto(s)
Endocitosis , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/fisiología , Eliminación de Gen , Proteínas de la Membrana/genética , Plasmodium falciparum/genética
13.
Cell Host Microbe ; 18(4): 433-44, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468747

RESUMEN

The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress.


Asunto(s)
Eritrocitos/parasitología , Proteína 1 de Superficie de Merozoito/metabolismo , Merozoítos/fisiología , Plasmodium falciparum/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Espectrina/metabolismo , Subtilisinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteína 1 de Superficie de Merozoito/química , Merozoítos/enzimología , Modelos Biológicos , Plasmodium falciparum/enzimología , Unión Proteica , Conformación Proteica , Proteolisis
14.
Science ; 331(6023): 1436-9, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21415351

RESUMEN

C4 photosynthesis allows increased photosynthetic efficiency because carbon dioxide (CO2) is concentrated around the key enzyme RuBisCO. Leaves of C4 plants exhibit modified biochemistry, cell biology, and leaf development, but despite this complexity, C4 photosynthesis has evolved independently in at least 45 lineages of plants. We found that two independent lineages of C4 plant, whose last common ancestor predates the divergence of monocotyledons and dicotyledons about 180 million years ago, show conserved mechanisms controlling the expression of genes important for release of CO(2) around RuBisCO in bundle sheath (BS) cells. Orthologous genes from monocotyledonous and dicotyledonous C3 species also contained conserved regulatory elements that conferred BS specificity when placed into C4 species. We conclude that these conserved functional genetic elements likely facilitated the repeated evolution of C4 photosynthesis.


Asunto(s)
Cleome/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Regiones no Traducidas 5' , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cleome/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Transformación Genética , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA