Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628608

RESUMEN

Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.


Asunto(s)
Preeclampsia , Complicaciones del Embarazo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Sindecano-1/genética , Sindecano-1/metabolismo
2.
Entropy (Basel) ; 21(8)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-33267475

RESUMEN

The human postsynaptic density is an elaborate network comprising thousands of proteins, playing a vital role in the molecular events of learning and the formation of memory. Despite our growing knowledge of specific proteins and their interactions, atomic-level details of their full three-dimensional structure and their rearrangements are mostly elusive. Advancements in structural bioinformatics enabled us to depict the characteristic features of proteins involved in different processes aiding neurotransmission. We show that postsynaptic protein-protein interactions are mediated through the delicate balance of intrinsically disordered regions and folded domains, and this duality is also imprinted in the amino acid sequence. We introduce Diversity of Potential Interactions (DPI), a structure and regulation based descriptor to assess the diversity of interactions. Our approach reveals that the postsynaptic proteome has its own characteristic features and these properties reliably discriminate them from other proteins of the human proteome. Our results suggest that postsynaptic proteins are especially susceptible to forming diverse interactions with each other, which might be key in the reorganization of the postsynaptic density (PSD) in molecular processes related to learning and memory.

3.
BMC Cancer ; 18(1): 695, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945573

RESUMEN

BACKGROUND: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS: DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN , Exones , Mutación , Regiones Promotoras Genéticas , Adenoma/genética , Islas de CpG , Humanos , Elementos de Nucleótido Esparcido Largo , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiología
4.
Orv Hetil ; 159(2): 64-69, 2018 Jan.
Artículo en Húngaro | MEDLINE | ID: mdl-29307221

RESUMEN

INTRODUCTION: According to the international literature, DNA methylation analysis of the promoter region of SNRPN locus is the most efficient way to start genetic investigation in patients with suspected Prader-Willi syndrome. AIM: Our aim was to develop a simple, reliable first-tier diagnosis to confirm Prader-Willi syndrome, therefore to compare our self-designed simple, cost-efficient high-resolution melting analysis and the most commonly used methylation-specific multiplex ligation-dependent probe amplification to confirm Prader-Willi syndrome. METHOD: We studied 17 clinically suspected Prader-Willi syndrome children and their DNA samples. With self-designed primers, bisulfite-sensitive polymerase chain reaction, high-resolution melting analysis and, as a control, methylation-specific multiplex ligation-dependent probe amplification were performed. RESULTS: Prader-Willi syndrome was genetically confirmed in 6 out of 17 clinically suspected Prader-Willi syndrome patients. The results of high-resolution melting analysis and methylation-specific multiplex ligation-dependent probe amplification were equivalent in each case. CONCLUSION: Using our self-designed primers and altered bisulfite-specific PCR conditions, high-resolution melting analysis appears to be a simple, fast, reliable and effective method for primarily proving or excluding clinically suspected Prade-Willi syndrome cases. Orv Hetil. 2018; 159(2): 64-69.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Síndrome de Prader-Willi/diagnóstico , Niño , Preescolar , Cromosomas Humanos Par 15/genética , Femenino , Genotipo , Humanos , Masculino , Síndrome de Prader-Willi/genética
5.
BMC Cancer ; 15: 736, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26482433

RESUMEN

BACKGROUND: Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence. METHODS: Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed. RESULTS: A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence. CONCLUSION: Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Adenoma/metabolismo , Adenoma/patología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas de la Membrana/biosíntesis , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , ARN Mensajero/genética , Receptores Inmunológicos/biosíntesis , Receptores de Prostaglandina/biosíntesis
6.
Eur J Cancer ; 202: 114005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531265

RESUMEN

INTRODUCTION: Dedifferentiated liposarcoma (DDLPS) is a common form of liposarcoma with challenging treatment modalities. Pan-TRK immunopositivity can be often observed without NTRK gene fusion in soft tissue sarcomas with myogenic differentiation. Expression and the role of NTRK in DDLPS are under-studied. We sought to identify activating mutations of the NTRK genes. MATERIALS AND METHODS: 131 DDLPS patients were selected for pan-TRK immunohistochemistry and positive cases were analyzed by Sanger sequencing for NTRK1, NTRK2 and NTRK3 genes. Functional assays were performed using a lentiviral transduction system to study the effect of NTRK variants in fibroblast, immortalized fibroblast, and dedifferentiated liposarcoma cell lines. RESULTS: Out of the 131 DDLPS cases, 75 immunohistochemical staining positive cases, 46 were successfully Sanger sequenced. A recurrent somatic mutation pair in cis position (NGS) of the NTRK1 c.1810C>T (p.H604Y) and c.1838G>T (p.G613V) was identified in six cases (13%) that have never been reported in DDLPS. NTRK fusions were excluded in all six cases by FISH and NGS. The phospho-AKT immunopositivity among the six mutated cases suggested downstream activation of the NTRK signaling pathway. Functional assays showed no transforming effects, but resistance to first- and second-line TRK inhibitors of the p.G613V and p.H604Y variant. CONCLUSIONS: We detected (de novo/somatic) missense mutation variants in cis position of the NTRK1 gene in a subset of DDLPS indicating modifying mutations that may contribute to tumorigenesis in a subset of DDLPS. These variants beget resistance to TRK inhibitors indicating an interesting biomarker for other studies with TRK inhibitors.


Asunto(s)
Liposarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Liposarcoma/genética , Mutación , Proteínas de Fusión Oncogénica/genética , Receptor trkA/genética , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética
7.
Mod Pathol ; 26(3): 393-403, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23174932

RESUMEN

About 10% of epithelioid sarcomas have biallelic mutation of the SMARCB1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily b, member 1) gene resulting in a lack of this nuclear protein. It has been suggested that SMARCB1 may be silenced by epigenetic changes in the remaining 90% of tumors. Thus, we hypothesized that the promoter of SMARCB1 is hypermethylated. We also examined SMARCB1 mRNA level to determine if a post-translational change was possible. Thirty-six cases of epithelioid sarcomas were studied. Immunohistochemistry and mutation analysis of the SMARCB1 gene were performed to select appropriate cases. Methylation status was assessed by methylation-specific PCR. Laser capture microdissection of tumor cells followed by real-time PCR was applied to examine the expression of SMARCB1 mRNA. Of 36 epithelioid sarcomas, 31 (86%) displayed a lack of SMARCB1 nuclear protein. In all, 4 (13%) of 31 SMARCB1-negative cases harbored biallelic deletion while 9 (33%) cases showed single-allelic deletion. One (4%) frameshift deletion of exon 3 and one point mutation of exon 7 were also found. In 16 (59%) cases, both alleles were intact. Altogether, 25/31 (81%) SMARCB1-negative cases had at least one intact allele. None of these cases demonstrated promoter hypermethylation. Low levels of SMARCB1 mRNA were found in all cases with tumor tissue extracted RNA (because of the minimal normal cell contamination) but no mRNA could be detected in laser dissected cases (containing only tumor cells). Enhancer of zeste homolog 2 (EZH2) overexpression was not characteristic of epithelioid sarcoma. Thus, loss of SMARCB1 expression in epithelioid sarcoma is caused neither by DNA hypermethylation nor by post-translational modifications. Most likely it is the microRNA destruction of SMARCB1 mRNA but further investigations are needed to elucidate this issue.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Histonas/análisis , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Proteínas Cromosómicas no Histona/análisis , Análisis Mutacional de ADN , Proteínas de Unión al ADN/análisis , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Captura por Microdisección con Láser , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Polonia , Complejo Represivo Polycomb 2/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína SMARCB1 , Sarcoma/química , Sarcoma/patología , Neoplasias de los Tejidos Blandos/química , Neoplasias de los Tejidos Blandos/patología , Factores de Transcripción/análisis , Estados Unidos , Adulto Joven
8.
PLoS Genet ; 6(3): e1000889, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20361057

RESUMEN

We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.


Asunto(s)
Nucléolo Celular/genética , Genoma Humano , Genómica , Cromatina/genética , Células HeLa , Humanos
10.
Biomol NMR Assign ; 16(1): 121-127, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35083656

RESUMEN

Shank proteins are among the most abundant and well-studied postsynaptic scaffold proteins. Their PDZ domain has unique characteristics as one of its loop regions flanking the ligand-binding site is uniquely long and has also been implicated in the formation of PDZ dimers. Here we report the initial characterization of the Shank1 PDZ domain by solution NMR spectroscopy. The assigned chemical shifts are largely consistent with the common features of PDZ domains in general and the available Shank PDZ crystal structures in particular. Our analysis suggests that under the conditions investigated, the domain is monomeric and the unique loop harbors a short helical segment, observed in only one of the known X-ray structures so far. Our work stresses the importance of solution-state investigations to fully decipher the functional relevance of the structural and dynamical features unique to Shank PDZ domains.


Asunto(s)
Proteínas del Tejido Nervioso , Dominios PDZ , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas del Tejido Nervioso/química , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
11.
Front Oncol ; 12: 819883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186754

RESUMEN

The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.

12.
Lab Invest ; 91(3): 439-51, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20956977

RESUMEN

Accumulation of connective tissue is a typical feature of chronic liver diseases. Decorin, a small leucine-rich proteoglycan, regulates collagen fibrillogenesis during development, and by directly blocking the bioactivity of transforming growth factor-ß1 (TGFß1), it exerts a protective effect against fibrosis. However, no in vivo investigations on the role of decorin in liver have been performed before. In this study we used decorin-null (Dcn-/-) mice to establish the role of decorin in experimental liver fibrosis and repair. Not only the extent of experimentally induced liver fibrosis was more severe in Dcn-/- animals, but also the healing process was significantly delayed vis-à-vis wild-type mice. Collagen I, III, and IV mRNA levels in Dcn-/- livers were higher than those of wild-type livers only in the first 2 months, but no difference was observed after 4 months of fibrosis induction, suggesting that the elevation of these proteins reflects a specific impairment of their degradation. Gelatinase assays confirmed this hypothesis as we found decreased MMP-2 and MMP-9 activity and higher expression of TIMP-1 and PAI-1 mRNA in Dcn-/- livers. In contrast, at the end of the recovery phase increased production rather than impaired degradation was found to be responsible for the excessive connective tissue deposition in livers of Dcn-/- mice. Higher expression of TGFß1-inducible early responsive gene in decorin-null livers indicated enhanced bioactivity of TGFß1 known to upregulate TIMP-1 and PAI-1 as well. Moreover, two main axes of TGFß1-evoked signaling pathways were affected by decorin deficiency, namely the Erk1/2 and Smad3 were activated in Dcn-/- samples, whereas no significant difference in phospho-Smad2 was observed between mice with different genotypes. Collectively, our results indicate that the lack of decorin favors the development of hepatic fibrosis and attenuates its subsequent healing process at least in part by affecting the bioactivity of TGFß1.


Asunto(s)
Tejido Conectivo/metabolismo , Tejido Conectivo/patología , Decorina/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/patología , Animales , Línea Celular , Tejido Conectivo/efectos de los fármacos , Decorina/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Metaloproteinasas de la Matriz Secretadas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Procolágeno/genética , Procolágeno/metabolismo , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
13.
Biomolecules ; 10(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977498

RESUMEN

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína Proto-Oncogénica c-ets-1/genética , Sindecano-1/genética , Factor de Transcripción AP-1/genética , Carcinoma Hepatocelular/patología , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Heparitina Sulfato/farmacología , Factor de Crecimiento de Hepatocito/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
J Cancer ; 9(15): 2743, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087715

RESUMEN

[This corrects the article DOI: 10.7150/jca.16037.].

15.
Obes Facts ; 10(4): 353-362, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28787727

RESUMEN

OBJECTIVE: Worldwide increasing childhood obesity is due to interactions between environmental and genetic factors, linked together by epigenetic mechanisms such as DNA methylation. METHODS: 82 obese children (>95th BMI percentile , age: 3-18 years) were included. Anthropometric data, metabolic parameters, 25-OH vitamin D (25OHD), and pubertal status were recorded, 24-hour blood pressure monitoring was performed. BMI standard deviation score (SDS) was calculated. Using candidate gene approach, obesity- (insulin-like growth factor 2 (IGF2), proopiomelanocortin (POMC)) and vitamin D metabolism-related genes (1-alfa-hydroxylase (CYP27B1), VDR) regulated by DNA methylation were selected. After isolating DNA from peripheral blood, bisulfite conversion, bisulfite specific polymerase chain reaction (BS-PCR), and pyrosequencing were carried out. RESULTS: No significant correlation between 25-OHD and metabolic parameters and DNA methylation status, but a tendency of positive correlation between VDR methylation status and 25-OHD (r = 0.2053,p = 0.066) were observed. Significant positive correlations between BMI SDS and CYP27B1 hypermethylation (r = 0.2371,p = 0.0342) and a significant negative correlation between IGF2 hypomethylation and BMI SDS (r = -0.305,p = 0.0059) were found. Conclusions Rate of obesity shows correlation with DNA methylation. Hypomethylation of IGF2 and hypermethylation of CYP27B1 genes might positively influence the rate of BMI observed in obese children.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Metilación de ADN , Epigénesis Genética/genética , Factor II del Crecimiento Similar a la Insulina/genética , Obesidad Infantil/genética , Adolescente , Índice de Masa Corporal , Niño , Preescolar , Femenino , Humanos , Masculino , Receptores de Calcitriol/genética
16.
J Cancer ; 8(2): 162-173, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243320

RESUMEN

Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations (FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation (APC). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

17.
Pathol Oncol Res ; 23(3): 589-594, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27896617

RESUMEN

Colorectal sessile serrated adenomas (SSA) are hypothesized to be precursor lesions of an alternative, serrated pathway of colorectal cancer, abundant in genes with aberrant promoter DNA hypermethylation. In our present pilot study, we explored DNA methylation profiles and examined selected gene mutations in SSA. Biopsy samples from patients undergoing screening colonoscopy were obtained during endoscopic examination. After DNA isolation and quality analysis, SSAs (n = 4) and healthy controls (n = 5) were chosen for further analysis. DNA methylation status of 96 candidate genes was screened by q(RT)PCR using Methyl-Profiler PCR array system. Amplicons for 12 gene mutations were sequenced by GS Junior Instrument using ligated and barcoded adaptors. Analysis of DNA methylation revealed 9 hypermethylated genes in both normal and SSA samples. 12 genes (CALCA, DKK2, GALR2, OPCML, PCDH10, SFRP1, SFRP2, SLIT3, SST, TAC1, VIM, WIF1) were hypermethylated in all SSAs and 2 additional genes (BNC1 and PDLIM4) were hypermethylated in 3 out of 4 SSAs, but in none of the normal samples. 2 SSAs exhibited BRAF mutation and synchronous MLH1 hypermethylation and were microsatellite instable by immunohistochemical analysis. Our combined mutation and DNA methylation analysis revealed that there is a common DNA methylation signature present in pre-neoplastic SSAs. This study advocates for the use of DNA methylation as a potential biomarker for the detection of SSA; however, further investigation is needed to better characterize the molecular background of these newly recognized colorectal lesions.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Metilación de ADN/genética , Mutación/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Proteínas Nucleares/genética , Proyectos Piloto , Proteínas Proto-Oncogénicas B-raf/genética
18.
Epigenetics ; 12(9): 751-763, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28753106

RESUMEN

Aberrant methylation is one of the most frequent epigenetic alterations that can contribute to tumor formation. Cell-free DNA can originate from tumor tissue; therefore, the evaluation of methylation markers in cell-free DNA can be a promising method for cancer screening. Our aim was to develop a panel of biomarkers with altered methylation along the colorectal adenoma-carcinoma sequence in both colonic tissue and plasma. Methylation of selected CpG sites in healthy colonic (n = 15), adenoma (n = 15), and colorectal cancer (n = 15) tissues was analyzed by pyrosequencing. MethyLight PCR was applied to study the DNA methylation of SFRP1, SFRP2, SDC2, and PRIMA1 gene promoters in 121 plasma and 32 biopsy samples. The effect of altered promoter methylation on protein expression was examined by immunohistochemistry. Significantly higher (P < 0.05) DNA methylation levels were detected in the promoter regions of all 4 markers, both in CRC and adenoma tissues compared with healthy controls. Methylation of SFRP1, SFRP2, SDC2, and PRIMA1 promoter sequences was observed in 85.1%, 72.3%, 89.4%, and 80.9% of plasma samples from patients with CRC and 89.2%, 83.8%, 81.1% and 70.3% from adenoma patients, respectively. When applied as a panel, CRC patients could be distinguished from controls with 91.5% sensitivity and 97.3% specificity [area under the curve (AUC) = 0.978], while adenoma samples could be differentiated with 89.2% sensitivity and 86.5% specificity (AUC = 0.937). Immunohistochemical analysis indicated decreasing protein levels of all 4 markers along the colorectal adenoma-carcinoma sequence. Our findings suggest that this methylation biomarker panel allows non-invasive detection of colorectal adenoma and cancer from plasma samples.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Sindecano-2/genética , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/química , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Regiones Promotoras Genéticas , Sindecano-2/química
19.
Magy Onkol ; 50(2): 115-20, 2006.
Artículo en Húngaro | MEDLINE | ID: mdl-16888674

RESUMEN

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which plays pivotal role in cell-cell and cell-extracellular matrix interactions. However, its implication in the establishment of malignant phenotype is still controversial. Its expression indicates differentiated phenotype in certain tumors, while it confers invasive nature for others. For the better understanding of the role of syndecan-1 in cancer we transfected HT-1080 fibrosarcoma cell line with the full and a truncated construct of syndecan-1 and established stable cell lines with them. We studied the in vitro and in vivo growth capacity and metastatic potential of the transfectants in comparison with the cell line bearing only the EGFP expression vector. Our results showed that the growth rate of syndecan transfectants increased and they developed more lung metastases than the control cells. As local growth of the full transfectant was faster than that of the 78sig we presume that the full protein and maybe the shedding is needed for the local development of the tumor, but the intracellular and transmembrane domain is sufficient to promote metastasis formation.


Asunto(s)
Fibrosarcoma/patología , Glicoproteínas de Membrana/metabolismo , Proteoglicanos/metabolismo , Sarcoma Experimental/patología , Animales , Línea Celular Tumoral , Fibrosarcoma/metabolismo , Inmunohistoquímica , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica , Fenotipo , Sarcoma Experimental/metabolismo , Sindecano-1 , Sindecanos , Transfección
20.
World J Gastroenterol ; 22(47): 10325-10340, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28058013

RESUMEN

AIM: To analyze colorectal carcinogenesis and age-related DNA methylation alterations of gene sequences associated with epigenetic clock CpG sites. METHODS: In silico DNA methylation analysis of 353 epigenetic clock CpG sites published by Steve Horvath was performed using methylation array data for a set of 123 colonic tissue samples [64 colorectal cancer (CRC), 42 adenoma, 17 normal; GEO accession number: GSE48684]. Among the differentially methylated age-related genes, secreted frizzled related protein 1 (SFRP1) promoter methylation was further investigated in colonic tissue from 8 healthy adults, 19 normal children, 20 adenoma and 8 CRC patients using bisulfite-specific PCR followed by methylation-specific high resolution melting (MS-HRM) analysis. mRNA expression of age-related "epigenetic clock" genes was studied using Affymetrix HGU133 Plus2.0 whole transcriptome data of 153 colonic biopsy samples (49 healthy adult, 49 adenoma, 49 CRC, 6 healthy children) (GEO accession numbers: GSE37364, GSE10714, GSE4183, GSE37267). Whole promoter methylation analysis of genes showing inverse DNA methylation-gene expression data was performed on 30 colonic samples using methyl capture sequencing. RESULTS: Fifty-seven age-related CpG sites including hypermethylated PPP1R16B, SFRP1, SYNE1 and hypomethylated MGP, PIPOX were differentially methylated between CRC and normal tissues (P < 0.05, Δß ≥ 10%). In the adenoma vs normal comparison, 70 CpG sites differed significantly, including hypermethylated DKK3, SDC2, SFRP1, SYNE1 and hypomethylated CEMIP, SPATA18 (P < 0.05, Δß ≥ 10%). In MS-HRM analysis, the SFRP1 promoter region was significantly hypermethylated in CRC (55.0% ± 8.4 %) and adenoma tissue samples (49.9% ± 18.1%) compared to normal adult (5.2% ± 2.7%) and young (2.2% ± 0.7%) colonic tissue (P < 0.0001). DNA methylation of SFRP1 promoter was slightly, but significantly increased in healthy adults compared to normal young samples (P < 0.02). This correlated with significantly increased SFRP1 mRNA levels in children compared to normal adult samples (P < 0.05). In CRC tissue the mRNA expression of 117 age-related genes were changed, while in adenoma samples 102 genes showed differential expression compared with normal colonic tissue (P < 0.05, logFC > 0.5). The change of expression for several genes including SYNE1, CLEC3B, LTBP3 and SFRP1, followed the same pattern in aging and carcinogenesis, though not for all genes (e.g., MGP). CONCLUSION: Several age-related DNA methylation alterations can be observed during CRC development and progression affecting the mRNA expression of certain CRC- and adenoma-related key control genes.


Asunto(s)
Adenoma/genética , Envejecimiento/genética , Biomarcadores de Tumor/genética , Carcinoma/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Adenoma/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Carcinoma/patología , Estudios de Casos y Controles , Niño , Preescolar , Neoplasias Colorrectales/patología , Islas de CpG , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA