Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 44(D1): D1054-68, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26464438

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Proteínas/efectos de los fármacos , Ontologías Biológicas , Enfermedad , Genoma Humano , Humanos , Internet , Ligandos , Patentes como Asunto , Fosfotransferasas/antagonistas & inhibidores , Proteínas/genética
2.
Pharmacol Rev ; 66(4): 918-47, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25026896

RESUMEN

Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Ligandos , Terminología como Asunto , Humanos , Canales Iónicos/metabolismo , Modelos Químicos , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
3.
Nucleic Acids Res ; 42(Database issue): D1098-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24234439

RESUMEN

The International Union of Basic and Clinical Pharmacology/British Pharmacological Society (IUPHAR/BPS) Guide to PHARMACOLOGY (http://www.guidetopharmacology.org) is a new open access resource providing pharmacological, chemical, genetic, functional and pathophysiological data on the targets of approved and experimental drugs. Created under the auspices of the IUPHAR and the BPS, the portal provides concise, peer-reviewed overviews of the key properties of a wide range of established and potential drug targets, with in-depth information for a subset of important targets. The resource is the result of curation and integration of data from the IUPHAR Database (IUPHAR-DB) and the published BPS 'Guide to Receptors and Channels' (GRAC) compendium. The data are derived from a global network of expert contributors, and the information is extensively linked to relevant databases, including ChEMBL, DrugBank, Ensembl, PubChem, UniProt and PubMed. Each of the ∼6000 small molecule and peptide ligands is annotated with manually curated 2D chemical structures or amino acid sequences, nomenclature and database links. Future expansion of the resource will complete the coverage of all the targets of currently approved drugs and future candidate targets, alongside educational resources to guide scientists and students in pharmacological principles and techniques.


Asunto(s)
Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Internet , Bases del Conocimiento , Ligandos , Preparaciones Farmacéuticas/química , Proteínas/química , Proteínas/efectos de los fármacos
4.
Nucleic Acids Res ; 41(Database issue): D1083-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23087376

RESUMEN

The International Union of Basic and Clinical Pharmacology (IUPHAR) database, IUPHAR-DB (http://www.iuphar-db.org) is an open access, online database providing detailed, expert-driven annotation of the primary literature on human and rodent receptors and other drug targets, together with the substances that act on them. The present release includes information on the products of 646 genes from four major protein classes (G protein-coupled receptors, nuclear hormone receptors, voltage- and ligand-gated ion channels) and ∼3180 bioactive molecules (endogenous ligands, licensed drugs and key pharmacological tools) that interact with them. We have described previously the classification and curation of data for small molecule ligands in the database; in this update we have annotated 366 endogenous peptide ligands with their amino acid sequences, post-translational modifications, links to precursor genes, species differences and relationships with other molecules in the database (e.g. those derived from the same precursor). We have also matched targets with their endogenous ligands (peptides and small molecules), with particular attention paid to identifying bioactive peptide ligands generated by post-translational modification of precursor proteins. Other improvements to the database include enhanced information on the clinical relevance of targets and ligands in the database, more extensive links to other databases and a pilot project for the curation of enzymes as drug targets.


Asunto(s)
Bases de Datos de Compuestos Químicos , Canales Iónicos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Animales , Inhibidores Enzimáticos/química , Enzimas/química , Enzimas/efectos de los fármacos , Enzimas/genética , Humanos , Internet , Canales Iónicos/química , Canales Iónicos/genética , Lanosterol/biosíntesis , Ligandos , Ratones , Anotación de Secuencia Molecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Preparaciones Farmacéuticas/química , Farmacología , Ratas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
5.
J Biol Chem ; 288(30): 21558-68, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23740249

RESUMEN

The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Šgap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity.


Asunto(s)
Conformación Proteica , Estructura Secundaria de Proteína , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/fisiología , Secuencia de Aminoácidos , Animales , Arginina/química , Arginina/genética , Arginina/fisiología , Sitios de Unión/genética , Células HEK293 , Humanos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Multimerización de Proteína , Receptores de Serotonina 5-HT3/genética , Homología de Secuencia de Aminoácido , Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Torpedo , Transfección
6.
J Biol Chem ; 288(44): 31592-601, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24030822

RESUMEN

Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT3A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT3A receptor model. We probed the majority of residues within the MA helix of the human 5-HT3A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT3A receptor portals, which agrees well with the homology model.


Asunto(s)
Modelos Moleculares , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/metabolismo , Animales , Línea Celular , Humanos , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Serotonina 5-HT3/genética , Homología Estructural de Proteína , Torpedo
7.
Inorg Chem ; 52(12): 7045-50, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23713838

RESUMEN

We investigated an antimony chalcohalide compound, SbSeI, as a potential semiconductor material for X-ray and γ-ray detection. SbSeI has a wide band gap of 1.70 eV with a density of 5.80 g/cm(3), and it crystallizes in the orthorhombic Pnma space group with a one-dimensional chain structure comprised of infinite zigzag chains of dimers [Sb2Se4I8]n running along the crystallographic b axis. In this study, we investigate conditions for vertical Bridgman crystal growth using combinations of the peak temperature and temperature gradients as well as translation rate set in a three-zone furnace. SbSeI samples grown at 495 °C peak temperature and 19 °C/cm temperature gradient with 2.5 mm/h translation rate produced a single phase of columnar needlelike crystals aligned along the translational direction of the growth. The ingot sample exhibited an n-type semiconductor with resistivity of ∼10(8) Ω·cm. Photoconductivity measurements on these specimens allowed us to determine mobility-lifetime (µτ) products for electron and hole carriers that were found to be of similar order of magnitude (∼10(-4) cm(2)/V). Further, the SbSeI ingot with well-aligned, one-dimensional columnar needlelike crystals shows an appreciable response of Ag Kα X-ray.


Asunto(s)
Antimonio/química , Calcógenos/química , Yoduros/química , Semiconductores , Microscopía Electrónica de Rastreo , Modelos Moleculares , Procesos Fotoquímicos , Radiactividad
8.
Adv Mater ; 35(25): e2211840, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36943095

RESUMEN

Solution-processed perovskites are promising for hard X-ray and gamma-ray detection, but there are limited reports on their performance under extremely intense X-rays. Here, a solution-grown all-inorganic perovskite CsPbBr3 single-crystal semiconductor detector capable of operating at ultrahigh X-ray flux of 1010 photons s-1 mm-2 is reported. High-quality solution-grown CsPbBr3 single crystals are fabricated into detectors with a Schottky diode structure of eutectic gallium indium/CsPbBr3 /Au. A high reverse-bias voltage of 1000 V (435 V mm- 1 ) can be applied with a small and stable dark current of ≈60-70 nA (≈9-10 nA mm- 2 ), which enables a high sensitivity larger than 10 000 µC Gyair -1 cm- 2 and a simultaneous low detection limit of 22 nGyair s- 1 . The CsPbBr3 semiconductor detector shows an excellent photocurrent linearity and reproducibility under 58.61 keV synchrotron X-rays with flux from 106 to 1010 photons s- 1 mm- 2 . Defect characterization by thermally stimulated current spectroscopy shows a similar low defect density of a synchrotron X-ray and a lab X-ray irradiated device. Solid-state nuclear magnetic resonance spectroscopy suggests that the excellent performance of the solution-grown CsPbBr3 single crystal may be associated with its good short-range order, comparable to the spectrometer-grade melt-grown CsPbBr3 .

9.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123152

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Proteínas de Transporte de Membrana , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos y Nucleares
10.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123154

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Canales Iónicos , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
11.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123156

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Canales Iónicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos y Nucleares
12.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123155

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Receptores Acoplados a Proteínas G , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
13.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123150

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos/química , Ligandos , Receptores Acoplados a Proteínas G , Bases de Datos Factuales
14.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123153

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Bases de Datos Factuales , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares
15.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
16.
J Biol Chem ; 286(18): 16008-17, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454663

RESUMEN

The determinants of single channel conductance (γ) and ion selectivity within eukaryotic pentameric ligand-gated ion channels have traditionally been ascribed to amino acid residues within the second transmembrane domain and flanking sequences of their component subunits. However, recent evidence suggests that γ is additionally controlled by residues within the intracellular and extracellular domains. We examined the influence of two anionic residues (Asp(113) and Asp(127)) within the extracellular vestibule of a high conductance human mutant 5-hydroxytryptamine type-3A (5-HT(3)A) receptor (5-HT(3)A(QDA)) upon γ, modulation of the latter by extracellular Ca(2+), and the permeability of Ca(2+) with respect to Cs(+) (P(Ca)/P(Cs)). Mutations neutralizing (Asp → Asn), or reversing (Asp → Lys), charge at the 113 locus decreased inward γ by 46 and 58%, respectively, but outward currents were unaffected. The D127N mutation decreased inward γ by 82% and also suppressed outward currents, whereas the D127K mutation caused loss of observable single channel currents. The forgoing mutations, except for D127K, which could not be evaluated, ameliorated suppression of inwardly directed single channel currents by extracellular Ca(2+). The P(Ca)/P(Cs) of 3.8 previously reported for the 5-HT(3)A(QDA) construct was reduced to 0.13 and 0.06 by the D127N and D127K mutations, respectively, with lesser, but clearly significant, effects caused by the D113N (1.04) and D113K (0.60) substitutions. Charge selectivity between monovalent cations and anions (P(Na)/P(Cl)) was unaffected by any of the mutations examined. The data identify two key residues in the extracellular vestibule of the 5-HT(3)A receptor that markedly influence γ, P(Ca)/P(Cs), and additionally the suppression of γ by Ca(2+).


Asunto(s)
Calcio/química , Receptores de Serotonina 5-HT3/química , Sustitución de Aminoácidos , Calcio/metabolismo , Línea Celular , Humanos , Transporte Iónico/fisiología , Mutación Missense , Permeabilidad , Estructura Terciaria de Proteína , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo
17.
J Am Chem Soc ; 133(26): 10030-3, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21671681

RESUMEN

We report that the chalcohalide compound Tl(6)SeI(4) is a promising material for efficient X-ray and γ-ray detection. This material has a higher figure of merit than the current state-of-the-art material for room-temperature operation, Cd(0.9)Zn(0.1)Te (CZT). We have synthesized high-quality single-crystalline wafers of Tl(6)SeI(4) with detector-grade resistivities and good carrier transport of both electrons and holes. We demonstrate that pulse height spectra recorded using Co-57 radiation show an energy resolution matching that of a commercial CZT detector material.

18.
IUPHAR BPS Guide Pharm CITE ; 2021(3)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35005623

RESUMEN

The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three ß, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, ß2-, ß3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, ß- and γ-subunits with the likely stoichiometry 2α.2ß.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and ß - subunit variant. The α1ß2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2ß3γ2 and α3ß3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the ß1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the ß+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/ß- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1ß2γ2, α1ßγ2, α3ßγ2, α4ßγ2, α4ß2δ, α4ß3δ, α5ßγ2, α6ßγ2, α6ß2δ, α6ß3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via ß-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].

19.
Br J Pharmacol ; 178 Suppl 1: S246-S263, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529827

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Proteínas de Transporte de Membrana , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
20.
Br J Pharmacol ; 178 Suppl 1: S264-S312, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529829

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15541. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA