Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 32(3): 1265-1280, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101223

RESUMEN

Cystathionine ß-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.


Asunto(s)
Aminobutiratos/metabolismo , Homocistinuria/metabolismo , Hígado/metabolismo , Piruvaldehído/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Ácidos Sulfínicos/metabolismo , Taurina/farmacología , Aminoácidos/metabolismo , Animales , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Homocistinuria/tratamiento farmacológico , Homocistinuria/patología , Hígado/efectos de los fármacos , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , gamma-Glutamiltransferasa/metabolismo
2.
Alcohol Clin Exp Res ; 42(7): 1192-1205, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29708596

RESUMEN

BACKGROUND: Glutathione S-transferase A4-4 (GSTA4) is a key enzyme for removal of toxic lipid peroxidation products such as 4-hydroxynonenal (4-HNE). In this study, we examined the potential role of GSTA4 on protein carbonylation and progression of alcoholic liver disease by examining the development of liver injury in male wild-type (WT) SV/J mice and SV/J mice lacking functional GSTA4 (GSTA4-/- mice). METHODS: Adult male WT and GSTA4-/- mice were fed chow (N = 10 to 12) or high-fat Lieber-DeCarli liquid diets containing up to 28% calories as ethanol (EtOH) (N = 18 to 20) for 116 days. At the end of the study, half of the EtOH-fed mice were acutely challenged with an EtOH binge (3 g/kg given intragastrically) 12 hours before sacrifice. Carbonylation of liver proteins was assessed by immunohistochemical staining for 4-HNE adduction and by comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) of purified carbonylated proteins. RESULTS: Chronic EtOH intake significantly increased hepatic 4-HNE adduction and protein carbonylation, including carbonylation of ribosomal proteins. EtOH intake also resulted in steatosis and increased serum alanine aminotransferase. Hepatic infiltration with B cells, T cells, and neutrophils and mRNA expression of pro-inflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)γ was modest in WT mice. However, an EtOH binge increased hepatic necrosis, hepatic cell proliferation, and expression of TNFα mRNA (p < 0.05). EtOH treatment of GSTA4-/- mice increased B-cell infiltration and increased mRNA expression of TNFα and IFNγ and of matrix remodeling markers MMP9, MMP13, and Col1A1 (p < 0.05). GSTA4-/- mice exhibited panlobular rather than periportal distribution of 4-HNE-adducted proteins and increased overall 4-HNE staining after EtOH binge. Comprehensive LC-MS of carbonylated proteins identified 1,022 proteins of which 189 were unique to the GSTA4-/- group. CONCLUSIONS: These data suggest long-term adaptation to EtOH in WT mice does not occur in GSTA4-/- mice. Products of lipid peroxidation appear to play a role in inflammatory responses due to EtOH. And EtOH effects on B-cell infiltration and autoimmune responses may be secondary to formation of carbonyl adducts.


Asunto(s)
Etanol/toxicidad , Glutatión Transferasa/deficiencia , Glutatión Transferasa/genética , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Carbonilación Proteica/fisiología , Animales , Etanol/administración & dosificación , Glutatión Transferasa/química , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Carbonilación Proteica/efectos de los fármacos , Estructura Secundaria de Proteína
3.
Exp Mol Pathol ; 104(1): 1-8, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180269

RESUMEN

OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a chronic cholestatic liver disease that is characterized by severe peri-biliary tract inflammation and fibrosis, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). The objective of this study was to determine the impact of end stage PSC/IBD on cellular antioxidant responses and the formation of protein carbonylation. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, overall inflammation, oxidative stress, and protein carbonylation were assessed by Western blotting, and immunohistochemistry. RESULTS: Increased immunohistochemical staining for CD3+ (lymphocyte), CD68 (Kupffer cell) and myeloperoxidase (neutrophil) colocalized with the extensive Picrosirius red stained fibrosis confirming the inflammatory aspect of PSC. Importantly, the increased inflammation also colocalized with elevated periportal post-translational modification by the reactive aldehydes 4-HNE, MDA and acrolein. 4-HNE, MDA and acrolein IHC all displayed a significant component in hepatocytes adjacent to fibrotic regions. Furthermore, acrolein was also elevated within the nuclei of periportal inflammatory cells whereas MDA staining was increased in hepatocytes across the lobule. Prussian Blue staining, when compared to the positive controls (ALD, NASH), did not display any evidence of iron accumulation in PSC/IBD livers. Western analysis of PSC/IBD anti-oxidant responses revealed elevated expression of SOD2, GSTπ as well as upregulation of Akt Ser473 phosphorylation. In contrast, expression of GSTµ, GSTA4, catalase, Gpx1 and Hsp70 were suppressed. These data were further supported by a significant decrease in measured GST activity. Dysregulation of anti-oxidant responses in the periportal region of the liver was supported by elevated SOD2 and GSTπ IHC signals in periportal hepatocytes and cholangiocytes. Expression of the Nrf2-regulated proteins HO-1, NAD(P)H quinone reductase (NQO1) and Gpx1 was primarily localized to macrophages. In contrast, catalase staining decreased within periportal hepatocytes and was not evident within cholangiocytes. CONCLUSIONS: Results herein provide additional evidence that cholestasis induces significant increases in periportal oxidative stress and suggest that there are significant differences in the cellular and subcellular generation of reactive aldehydes formed during cholestatic liver injury. Furthermore, these data suggest that anti-oxidant responses are dysregulated during end-stage PSC/IBD supporting pathological data. This work was funded by NIH5R37AA009300-22 D.R.P.


Asunto(s)
Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Adulto , Antioxidantes/metabolismo , Antioxidantes/fisiología , Catalasa/fisiología , Colestasis/fisiopatología , Femenino , Humanos , Inflamación/patología , Hígado/patología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/fisiología , Regulación hacia Arriba
4.
Exp Mol Pathol ; 105(1): 32-36, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29852184

RESUMEN

OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a severe cholestatic liver disease characterized by progressive peri-biliary tract inflammation, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). We previously reported dysregulation of key anti-oxidant pathways in PSC/IBD. The objective of this study was to expand previous data by examining the abundance of thioredoxins (Trx) in PSC/IBD. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, the protein abundance of thioredoxin, thioredoxin reductase (TrxR1), and their downstream substrates peroxiredoxins was assessed. RESULTS: Western blot analyses of thioredoxin and peroxiredoxin abundance revealed significant increases in abundance of Trx1 and TrxR1 whereas expression of thioredoxin-interacting protein was significantly decreased in PSC/IBD. Concurrently, abundance of cytosolic peroxiredoxins was not significantly impacted. The abundance of mitochondrial Trx2, along with peroxiredoxins 3, 5 and 6 were significantly decreased by concurrent PSC/IBD. Histological staining of Trx1/TrxR1 revealed elevated nuclear Trx1 and TrxR1 staining within cholangiocytes as well as an overall periportal increase in expression in PSC/IBD. An examination of additional anti-oxidant responses reveal suppression of gamma-glutamylcysteine synthetase and heme oxygenase (HO-1) whereas expression of the protein chaperone glucose regulated protein 78 increased suggesting elevated cellular stress in PSC/IBD. CONCLUSIONS: Results herein suggest that in addition to severe dysregulation of anti-oxidant responses, cholestasis impacts both cytosolic/nuclear (Trx1) as well as mitochondrial (Trx2) redox signaling and control pathways.


Asunto(s)
Colestasis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Peroxirredoxinas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/genética , Estudios de Casos y Controles , Colestasis/complicaciones , Colestasis/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Hígado/metabolismo , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
5.
J Biol Chem ; 289(22): 15449-62, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24722988

RESUMEN

The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered ß-oxidation in hepatocytes. A major regulator of ß-oxidation is 5' AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/ß, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys(130), Cys(174), Cys(227), and Cys(304) on recombinant AMPKα and Cys(225) on recombinant AMPKß. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered ß-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aldehídos/metabolismo , Etanol/farmacología , Hígado Graso/enzimología , Hepatopatías Alcohólicas/enzimología , Proteínas Quinasas Activadas por AMP/química , Aldehídos/farmacología , Animales , Depresores del Sistema Nervioso Central/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Químicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Carbonilación Proteica/efectos de los fármacos , Carbonilación Proteica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Am J Physiol Gastrointest Liver Physiol ; 308(5): G403-15, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25501545

RESUMEN

To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4-4-null (GSTA4-/-) mice for 40 days. GSTA4-/- mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α-/-), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice (P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4-/- compared with EtOH WT mice (P < 0.05). EtOH PPAR-α-/- mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-ß, platelet-derived growth factor receptor-ß (PDGFR-ß), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4-/-, PPAR-α-/-, and WT mice (P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups (P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4-/- or EtOH PPAR-α-/- genotype (P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.


Asunto(s)
Aldehídos/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Hepatopatías Alcohólicas/metabolismo , PPAR alfa/metabolismo , Actinas/genética , Actinas/metabolismo , Alanina Transaminasa/sangre , Aldehídos/inmunología , Animales , Anticuerpos/sangre , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis/metabolismo , Eliminación de Gen , Glutatión Transferasa/genética , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/inmunología , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , PPAR alfa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
7.
Adv Exp Med Biol ; 815: 173-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25427907

RESUMEN

The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a phosphatidylinositol (PtdIns) phosphatase that regulates Akt activation via PtdIns 3 kinase. Changes in PTEN expression and/or activity have been identified in a variety of chronic hepatocellular disorders including obesity, NAFLD, NASH, and alcoholism. In cancer biology, PTEN is frequently mutated or deleted in a wide variety of tumors. Mutations, decreased promoter activity, and decreased expression in PTEN are frequently identified in patients with hepatocellular carcinoma. While the majority of research on PTEN concerns obesity and NASH, PTEN clearly has a role in hepatic insulin sensitivity and in the development of steatosis during chronic alcoholism. Yet, in chronic alcoholics and HCC, very little is known concerning PTEN mutation/deletion or low PTEN expression. This review is focused on an overview of the current knowledge on molecular mechanisms of dysregulation of PTEN expression/activity in the liver and their relationship to development of ethanol-induced hepatocellular damage and cancer.


Asunto(s)
Alcoholismo/complicaciones , Carcinoma Hepatocelular/inducido químicamente , Hepatopatías Alcohólicas/etiología , Neoplasias Hepáticas/inducido químicamente , Fosfohidrolasa PTEN/fisiología , Animales , Humanos , Hígado/metabolismo , Procesamiento Proteico-Postraduccional
8.
Alcohol Clin Exp Res ; 38(12): 2896-906, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25581647

RESUMEN

BACKGROUND: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic EtOH feeding. If our hypothesis is correct, co-administration of antioxidants should prevent up-regulation of mitochondrial biogenesis genes. METHODS: Rats were fed an EtOH-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/d; control rats were administered isocaloric diets where carbohydrates substituted for EtOH calories. RESULTS: EtOH administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and reduced glutathione/glutathione disulfide ratio. These effects were inhibited by co-administration of EtOH and NAC. Chronic EtOH increased the expression of mitochondrial biogenesis genes including peroxisome proliferator-activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of EtOH and NAC prevented these effects. Chronic EtOH administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. CONCLUSIONS: These results suggest that oxidative stress caused by chronic EtOH triggered the up-regulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by chronic EtOH, mitochondrial mass and function decreased probably in association with mitochondrial oxidative damage. These results also predict that the effectiveness of NAC as an antioxidant therapy for chronic alcoholism will be limited by its limited antioxidant effects in mitochondria, and its inhibitory effect on mitochondrial biogenesis.


Asunto(s)
Acetilcisteína/administración & dosificación , Etanol/administración & dosificación , Hígado/metabolismo , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Regulación hacia Arriba/fisiología , Animales , Hígado/efectos de los fármacos , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos
9.
J Lipid Res ; 54(5): 1335-45, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23359610

RESUMEN

Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP(-/-) mice were fed a modified Lieber-DeCarli liquid diet for six weeks. To assess the response to chronic ethanol ingestion, standard biochemical indicators for alcoholic liver disease (ALD) and oxidative stress were measured. Ethanol ingestion resulted in attenuation of hepatic triglyceride accumulation and elevation of cholesterol in L-FABP(-/-) mice. Lipidomics analysis validated multiple alterations in hepatic lipids resulting from ethanol treatment. Increased immunohistochemical staining for the reactive aldehydes 4-hydroxynonenal and malondialdehyde were observed in WT mice ingesting ethanol; however, L-FABP(-/-) mice displayed prominent protein adducts in liver sections evaluated from pair-fed and ethanol-fed mice. Likewise, alterations in glutathione, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes, and protein carbonyl content all indicated L-FABP(-/-) mice exhibit high sustained oxidative stress in the liver. These data establish that L-FABP is an indirect antioxidant protein essential for sequestering FFA and that its impairment could contribute to in the pathogenesis of ALD.


Asunto(s)
Etanol/toxicidad , Proteínas de Unión a Ácidos Grasos/metabolismo , Hepatopatías Alcohólicas/genética , Estrés Oxidativo/efectos de los fármacos , Animales , Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Lípidos/análisis , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo/genética
10.
Hum Genomics ; 6: 6, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23245351

RESUMEN

Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs). These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX). As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR). Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.


Asunto(s)
Familia de Multigenes , Proteína Disulfuro Isomerasas/genética , Respuesta de Proteína Desplegada , Algoritmos , Bases de Datos Genéticas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Evolución Molecular , Humanos , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Alineación de Secuencia , Tiorredoxinas/química
11.
Neurochem Res ; 38(9): 1838-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23743623

RESUMEN

The antioxidant glutathione (GSH) plays a critical role in maintaining intracellular redox homeostasis but in tumors the GSH biosynthetic pathway is often dysregulated, contributing to tumor resistance to radiation and chemotherapy. Glutamate-cysteine ligase (GCL) catalyzes the first and rate-limiting reaction in GSH synthesis, and enzyme function is controlled by GSH feedback inhibition or by transcriptional upregulation of the catalytic (GCLC) and modifier (GCLM) subunits. However, it has recently been reported that the activity of GCLC and the formation of GCL can be modified by reactive aldehyde products derived from lipid peroxidation. Due to the susceptibility of GCLC to posttranslational modifications by reactive aldehydes, we examined the potential for 2-deoxy-D-ribose (2dDR) to glycate GCLC and regulate enzyme activity and GCL formation. 2dDR was found to directly modify both GCLC and GCLM in vitro, resulting in a significant inhibition of GCLC and GCL enzyme activity without altering substrate affinity or feedback inhibition. 2dDR-mediated glycation also inhibited GCL subunit heterodimerization and formation of the GCL holoenzyme complex while not causing dissociation of pre-formed holoenzyme. This PTM could be of particular importance in glioblastoma (GBM) where intratumoral necrosis provides an abundance of thymidine, which can be metabolized by thymidine phosphorylase (TP) to form 2dDR. TP is expressed at high levels in human GBM tumors and shRNA knockdown of TP in U87 GBM cells results in a significant increase in cellular GCL enzymatic activity.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Desoxirribosa/metabolismo , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Catálisis , Línea Celular Tumoral , Electroforesis en Gel de Poliacrilamida , Glioblastoma/enzimología , Glioblastoma/patología , Humanos , Cinética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
J Proteome Res ; 11(3): 1633-43, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22309199

RESUMEN

Mitochondrial protein hyperacetylation is a known consequence of sustained ethanol consumption and has been proposed to play a role in the pathogenesis of alcoholic liver disease (ALD). The mechanisms underlying this altered acetylome, however, remain unknown. The mitochondrial deacetylase sirtuin 3 (SIRT3) is reported to be the major regulator of mitochondrial protein deacetylation and remains a central focus for studies on protein acetylation. To investigate the mechanisms underlying ethanol-induced mitochondrial acetylation, we employed a model for ALD in both wild-type (WT) and SIRT3 knockout (KO) mice using a proteomics and bioinformatics approach. Here, WT and SIRT3 KO groups were compared in a mouse model of chronic ethanol consumption, revealing pathways relevant to ALD, including lipid and fatty acid metabolism, antioxidant response, amino acid biosynthesis and the electron-transport chain, each displaying proteins with altered acetylation. Interestingly, protein hyperacetylation resulting from ethanol consumption and SIRT3 ablation suggests ethanol-induced hyperacetylation targets numerous biological processes within the mitochondria, the majority of which are known to be acetylated through SIRT3-dependent mechanisms. These findings reveal overall increases in 91 mitochondrial targets for protein acetylation, identifying numerous critical metabolic and antioxidant pathways associated with ALD, suggesting an important role for mitochondrial protein acetylation in the pathogenesis of ALD.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Etanol/efectos adversos , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Sirtuina 3/genética , Acetilación , Acetiltransferasas/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Modelos Animales de Enfermedad , Electroforesis en Gel Bidimensional , Isocitrato Deshidrogenasa/metabolismo , Metabolismo de los Lípidos , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa/metabolismo
13.
Hum Genomics ; 5(3): 170-91, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21504868

RESUMEN

Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.


Asunto(s)
Evolución Molecular , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Especificidad de la Especie
14.
Hum Genomics ; 5(5): 485-96, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21807603

RESUMEN

The sirtuin family of proteins is categorised as class III histone deacetylases that play complex and important roles in ageing-related pathological conditions such as cancer and the deregulation of metabolism. There are seven members in humans, divided into four classes, and evolutionarily conserved orthologues can be found in most forms of life, including both eukaryotes and prokaryotes. The highly conserved catalytic core domain composed of a large oxidised nicotinamide adenine dinucleotide (NAD+)-binding Rossmann fold subunit suggests that these proteins belong to a family of nutrient-sensing regulators. Along with their function in regulating cellular metabolism in response to stressful conditions, they are implicated in modifying a wide variety of substrates; this increases the complexity of unravelling the interplay of sirtuins and their partners. Over the past few years, all of these new findings have attracted the interest of researchers exploring potential therapeutic implications related to the function of sirtuins. It remains to be elucidated whether, indeed, sirtuins can serve as molecular targets for the treatment of human illnesses.


Asunto(s)
Evolución Molecular , Sirtuinas/fisiología , Dominio Catalítico , Humanos , Longevidad/fisiología , NAD/química , NAD/metabolismo , Neoplasias/metabolismo , Filogenia , Sirtuinas/química , Sirtuinas/genética
15.
Chem Res Toxicol ; 25(4): 965-70, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22404378

RESUMEN

4-Hydroxynonenal (4-HNE) alters numerous proteomic and genomic processes. Understanding chemical mechanisms of 4-HNE interactions with biomolecules and their respective stabilities may lead to new discoveries in biomarkers for numerous diseases of oxidative stress. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) MS/MS were utilized to examine the stability of a 4-HNE-Cys Michael adduct. CID conditions resulted in the neutral loss of 4-HNE, also known as a retro-Michael addition reaction (RMA). Consequently, performing ETD fragmentation on this same adduct did not result in RMA. Interestingly, 4-HNE adduct reduction via sodium borohydride (NaBH4) treatment stabilized against the CID induced RMA. In a direct comparison of three forms of 4-HNE adducts, computational modeling revealed sizable shifts in the shape and orientation of the lowest unoccupied molecular orbital (LUMO) density around the 4-HNE-Cys moiety. These findings demonstrate that ETD MS/MS analysis can be used to improve the detection of 4-HNE-protein modifications by preventing RMA reactions from occurring.


Asunto(s)
Aldehídos/metabolismo , Espectrometría de Masas , Aldehídos/química , Cistina/química , Transporte de Electrón , Modelos Moleculares , Péptidos/química , Proteínas/química , Proteínas/metabolismo , Teoría Cuántica
16.
Chem Res Toxicol ; 25(5): 1012-21, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22502949

RESUMEN

Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of in vivo protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel in vivo sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD.


Asunto(s)
Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hígado/metabolismo , Hígado/patología , Carbonilación Proteica , Proteínas/metabolismo , Acroleína/análisis , Aldehídos/análisis , Animales , Etanol/efectos adversos , Etanol/metabolismo , Ácidos Grasos/metabolismo , Masculino , Malondialdehído/análisis , Ratones , Ratones Endogámicos C57BL , Proteínas/análisis , Proteómica , Espectrometría de Masas en Tándem , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
17.
PLoS One ; 17(11): e0276879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36378690

RESUMEN

Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver. Concurrently, the ability of reactive aldehydes to post-translationally modify the autophagosome marker p62 was assessed in PSC liver tissue and in cell culture. Expression of autophagy markers was upregulated in human and mouse cholestatic liver. Whereas mRNA expression of Atg12, Lamp1, Sqstm1 and Map1lc3 was increased in acute cholestasis in mice, it was either suppressed or not significantly changed in chronic cholestasis. In human and murine cholestasis, periportal hepatocytes showed increased IHC staining of ubiquitin, 4-HNE, p62, and selected antioxidant proteins. Increased p62 staining colocalized with accumulation of 4-HNE-modified proteins in periportal parenchymal cells as well as with periportal macrophages in both human and mouse liver. Mechanistically, p62 was identified as a direct target of lipid aldehyde adduction in PSC hepatic tissue and in vitro cell culture. In vitro LS-MS/MS analysis of 4-HNE treated recombinant p62 identified carbonylation of His123, Cys128, His174, His181, Lys238, Cys290, His340, Lys341 and His385. These data indicate that dysregulation of autophagy and oxidative stress/protein damage are present in the same periportal hepatocyte compartment of both human and murine cholestasis. Thus, our results suggest that both increased expression as well as ineffective autophagic degradation of oxidatively-modified proteins contributes to injury in periportal parenchymal cells and that direct modification of p62 by reactive aldehydes may contribute to autophagic dysfunction.


Asunto(s)
Antioxidantes , Colestasis , Humanos , Ratones , Masculino , Animales , Antioxidantes/metabolismo , Aldehídos/metabolismo , Espectrometría de Masas en Tándem , Colestasis/metabolismo , Hígado/metabolismo , Autofagia , Cirrosis Hepática/patología
18.
Biochemistry ; 50(19): 3984-96, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21438592

RESUMEN

The production of reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of hepatic diseases involving oxidative stress such as alcoholic liver disease (ALD). One consequence of ALD is increased insulin resistance in hepatocytes. To understand the effects of 4-HNE on insulin signaling in liver cells, we employed a model using hepatocellular carcinoma cell line HepG2. Previously, we have demonstrated an increase in the level of Akt phosphorylation is mediated by 4-HNE inhibition of PTEN, a direct regulator of Akt. In this work, we evaluated the effects of 4-HNE on insulin-dependent stimulation of the Akt2 pathway. We demonstrate that 4-HNE selectively leads to phosphorylation of Akt2. Although Akt2 is phosphorylated following 4-HNE treatment, the level of downstream phosphorylation of Akt substrates such as GSK3ß and MDM2 is significantly decreased. Pretreatment with 4-HNE prevented insulin-dependent Akt signaling and decreased intracellular Akt activity by 87%. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of Akt2, which was not observed in untreated control cells. Using a synthetic GSK3α/ß peptide as a substrate, treatment of recombinant human myristoylated Akt2 (rAkt2) with 20 or 40 µM 4-HNE inhibited rAkt2 activity by 30 or 85%, respectively. Matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF) identified Michael addition adducts of 4-HNE with His196, His267, and Cys311 of rAkt2. Computation-based molecular modeling analysis of 4-HNE adducted to His196 and Cys311 of Akt2 suggests inhibition of GSK3ß peptide binding by 4-HNE in the Akt2 substrate binding pocket. The inhibition of Akt by 4-HNE provides a novel mechanism for increased insulin resistance in ALD. These data provide a potential mechanism of dysregulation of Akt2 during events associated with sustained hepatocellular oxidative stress.


Asunto(s)
Aldehídos/farmacología , Regulación hacia Abajo/fisiología , Resistencia a la Insulina/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Regulación hacia Abajo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células Hep G2 , Humanos , Datos de Secuencia Molecular , Mapeo Peptídico/métodos , Péptidos/antagonistas & inhibidores , Péptidos/genética , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos
19.
J Proteome Res ; 10(4): 1837-47, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21319786

RESUMEN

Alcoholic liver disease (ALD) is a prominent cause of morbidity and mortality in the United States. Alterations in protein folding occur in numerous disease states, including ALD. The endoplasmic reticulum (ER) is the primary site of post-translational modifications (PTM) within the cell. Glycosylation, the most abundant PTM, affects protein stability, structure, localization, and activity. Decreases in hepatic glycosylation machinery have been observed in rodent models of ALD, but specific protein targets have not been identified. Utilizing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry, glycoproteins were identified in hepatic microsomal fractions from control and ethanol-fed mice. This study reports for the first time a global decrease in ER glycosylation. Additionally, the identification of 30 glycoproteins within this fraction elucidates pathway-specific alterations in ALD impaired glycosylation. Among the identified proteins, triacylglycerol hydrolase (TGH) is positively affected by glycosylation, showing increased activity following the addition of sugar moieties. Impaired TGH activity is associated with increased cellular storage of lipids and provides a potential mechanism for the observed pathologies associated with ALD.


Asunto(s)
Retículo Endoplásmico/metabolismo , Etanol/metabolismo , Glicoproteínas/análisis , Hígado/química , Hígado/citología , Animales , Cromatografía Liquida/métodos , Electroforesis en Gel Bidimensional/métodos , Etanol/administración & dosificación , Glicoproteínas/genética , Glicosilación , Humanos , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/química , Estrés Oxidativo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
20.
Mol Pharmacol ; 79(6): 941-52, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21415306

RESUMEN

The production of reactive aldehydes such as 4-hydroxynonenal (4-HNE) is proposed to be an important factor in the etiology of alcoholic liver disease. To understand the effects of 4-HNE on homeostatic signaling pathways in hepatocytes, cellular models consisting of the human hepatocellular carcinoma cell line (HepG2) and primary rat hepatocytes were evaluated. Treatment of both HepG2 cells and primary hepatocytes with subcytotoxic concentrations of 4-HNE resulted in the activation of Akt within 30 min as demonstrated by increased phosphorylation of residues Ser473 and Thr308. Quantification and subsequent immunocytochemistry of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)[rsqb] resulted in a 6-fold increase in total PtdIns(3,4,5)P(3) and increased immunostaining at the plasma membrane after 4-HNE treatment. Cotreatment of HepG2 cells with 4-HNE and the phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (Ly294002) or the protein phosphatase 2A (PP2A) inhibitor okadaic acid revealed that the mechanism of activation of Akt is PI3K-dependent and PP2A-independent. Using biotin hydrazide detection, it was established that the incubation of HepG2 cells with 4-HNE resulted in increased carbonylation of the lipid phosphatase known as "phosphatase and tensin homolog deleted on chromosome 10" (PTEN), a key regulator of Akt activation. Activity assays both in HepG2 cells and recombinant PTEN revealed a decrease in PTEN lipid phosphatase activity after 4-HNE application. Mass spectral analysis of 4-HNE-treated recombinant PTEN detected a single 4-HNE adduct. Subsequent analysis of Akt dependent physiological consequences of 4-HNE in HepG2 cells revealed significant increases in the accumulation of neutral lipids. These results provide a potential mechanism of Akt activation and cellular consequences of 4-HNE in hepatocytes.


Asunto(s)
Aldehídos/farmacología , Hepatocitos/efectos de los fármacos , Fosfohidrolasa PTEN/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Células Cultivadas , Cartilla de ADN , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Hepatocitos/enzimología , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA