Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(3): 2609-2628, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975541

RESUMEN

Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.

2.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446290

RESUMEN

Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Recurrencia Local de Neoplasia , Esclerosis Múltiple Crónica Progresiva/patología , Sistema Nervioso Central/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
3.
Curr Issues Mol Biol ; 44(7): 3208-3237, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877446

RESUMEN

The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.

4.
Int J Med Sci ; 19(1): 164-174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975310

RESUMEN

Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.


Asunto(s)
Factor Activador de Células B/fisiología , Linfocitos B/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Animales , Autoinmunidad , Factor Activador de Células B/metabolismo , Factor Activador de Células B/uso terapéutico , Humanos , Agentes Inmunomoduladores/uso terapéutico , Esclerosis Múltiple/terapia , Proteínas Nogo/fisiología , Transducción de Señal
5.
J Neurosci ; 39(28): 5562-5580, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31061088

RESUMEN

We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxß in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxß displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.


Asunto(s)
Transporte Axonal , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Axones/metabolismo , Células Cultivadas , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Receptor Nogo 1/genética , Células Ganglionares de la Retina/metabolismo , Transducción de Señal
6.
Clin Sci (Lond) ; 130(15): 1375-87, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005782

RESUMEN

An imbalance in oxidative stress and antioxidant defense mechanisms contributes to the development of ischaemic retinopathies such as diabetic retinopathy and retinopathy of prematurity (ROP). Currently, the therapeutic utility of targeting key transcription factors to restore this imbalance remains to be determined. We postulated that dh404, an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), the master regulator of oxidative stress responses, would attenuate retinal vasculopathy by mechanisms involving protection against oxidative stress-mediated damage to glia. Oxygen-induced retinopathy (OIR) was induced in neonatal C57BL/6J mice by exposure to hyperoxia (phase I) followed by room air (phase II). dh404 (1 mg/kg/every second day) reduced the vaso-obliteration of phase I OIR and neovascularization, vascular leakage and inflammation of phase II OIR. In phase I, the astrocytic template and vascular endothelial growth factor (VEGF) expression necessary for physiological angiogenesis are compromised resulting in vaso-obliteration. These events were attenuated by dh404 and related to dh404's ability to reduce the hyperoxia-induced increase in reactive oxygen species (ROS) and markers of cell damage as well as boost the Nrf2-responsive antioxidants in cultured astrocytes. In phase II, neovascularization and vascular leakage occurs following gliosis of Müller cells and their subsequent increased production of angiogenic factors. dh404 reduced Müller cell gliosis and vascular leakage in OIR as well as the hypoxia-induced increase in ROS and angiogenic factors with a concomitant increase in Nrf2-responsive antioxidants in cultured Müller cells. In conclusion, agents such as dh404 that reduce oxidative stress and promote antioxidant capacity offer a novel approach to lessen the vascular and glial cell damage that occurs in ischaemic retinopathies.


Asunto(s)
Antioxidantes/farmacología , Células Ependimogliales/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Neovascularización Retiniana/prevención & control , Retinopatía de la Prematuridad/prevención & control , Proteínas Angiogénicas/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Hiperoxia/complicaciones , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/farmacología , Ratas Sprague-Dawley , Retina/metabolismo , Retina/patología , Neovascularización Retiniana/etiología , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Retinopatía de la Prematuridad/etiología , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología , Transducción de Señal/efectos de los fármacos
7.
Neurosci Biobehav Rev ; 163: 105767, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885889

RESUMEN

Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.


Asunto(s)
Mitocondrias , Esclerosis Múltiple , Proteínas Nogo , Humanos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Nogo/metabolismo , Animales , Transducción de Señal/fisiología , Axones/metabolismo , Axones/patología
8.
Neurosci Biobehav Rev ; 164: 105788, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950685

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.

9.
Brain ; 135(Pt 6): 1794-818, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22544872

RESUMEN

Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoimmune encephalomyelitis; however, the mechanism by which this occurs is unclear. We now show that the collapsin response mediator protein 2 (CRMP-2), an important tubulin-associated protein that regulates axonal growth, is phosphorylated and hence inhibited during the progression of experimental autoimmune encephalomyelitis in degenerating axons. The phosphorylated form of CRMP-2 (pThr555CRMP-2) is localized to spinal cord neurons and axons in chronic-active multiple sclerosis lesions. Specifically, pThr555CRMP-2 is implicated to be Nogo-66 receptor 1 (NgR1)-dependent, since myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced NgR1 knock-out (ngr1(-)(/)(-)) mice display a reduced experimental autoimmune encephalomyelitis disease progression, without a deregulation of ngr1(-)(/)(-) MOG(35-55)-reactive lymphocytes and monocytes. The limitation of axonal degeneration/loss in experimental autoimmune encephalomyelitis-induced ngr1(-)(/)(-) mice is associated with lower levels of pThr555CRMP-2 in the spinal cord and optic nerve during experimental autoimmune encephalomyelitis. Furthermore, transduction of retinal ganglion cells with an adeno-associated viral vector encoding a site-specific mutant T555ACRMP-2 construct, limits optic nerve axonal degeneration occurring at peak stage of experimental autoimmune encephalomyelitis. Therapeutic administration of the anti-Nogo(623-640) antibody during the course of experimental autoimmune encephalomyelitis, associated with an improved clinical outcome, is demonstrated to abrogate the protein levels of pThr555CRMP-2 in the spinal cord and improve pathological outcome. We conclude that phosphorylation of CRMP-2 may be downstream of NgR1 activation and play a role in axonal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Blockade of Nogo-A/NgR1 interaction may serve as a viable therapeutic target in multiple sclerosis.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esclerosis Múltiple/patología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adulto , Análisis de Varianza , Animales , Anticuerpos/uso terapéutico , Axones/patología , Axones/ultraestructura , Complejo CD3/metabolismo , Línea Celular Tumoral , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica/genética , Glicoproteínas/efectos adversos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Mutación/genética , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Proteínas de Neurofilamentos/metabolismo , Receptor Nogo 1 , Nervio Óptico/metabolismo , Nervio Óptico/patología , Fragmentos de Péptidos/efectos adversos , Fosforilación , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/inmunología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
10.
Mol Cell Proteomics ; 10(6): M110.000042, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421798

RESUMEN

Neurodegenerative diseases, such as multiple sclerosis represent global health issues. Accordingly, there is an urgent need to understand the pathogenesis of this and other central nervous system disorders, so that more effective therapeutics can be developed. Cerebrospinal fluid is a potential source of important reporter molecules released from various cell types as a result of central nervous system pathology. Here, we report the development of an unbiased approach for the detection of reactive cerebrospinal fluid molecules and target brain proteins from patients with multiple sclerosis. To help identify molecules that may serve as clinical biomarkers for multiple sclerosis, we have biotinylated proteins present in the cerebrospinal fluid and tested their reactivity against brain homogenate as well as myelin and myelin-axolemmal complexes. Proteins were separated by two-dimensional gel electrophoresis, blotted onto membranes and probed separately with biotinylated unprocessed cerebrospinal fluid samples. Protein spots that reacted to two or more multiple sclerosis-cerebrospinal fluids were further analyzed by matrix assisted laser desorption ionization-time-of-flight time-of-flight mass spectrometry. In addition to previously reported proteins found in multiple sclerosis cerebrospinal fluid, such as αß crystallin, enolase, and 14-3-3-protein, we have identified several additional molecules involved in mitochondrial and energy metabolism, myelin gene expression and/or cytoskeletal organization. These include aspartate aminotransferase, cyclophilin-A, quaking protein, collapsin response mediator protein-2, ubiquitin carboxy-terminal hydrolase L1, and cofilin. To further validate these findings, the cellular expression pattern of collapsin response mediator protein-2 and ubiquitin carboxy-terminal hydrolase L1 were investigated in human chronic-active MS lesions by immunohistochemistry. The observation that in multiple sclerosis lesions phosphorylated collapsin response mediator protein-2 was increased, whereas Ubiquitin carboxy-terminal hydrolase L1 was down-regulated, not only highlights the importance of these molecules in the pathology of this disease, but also illustrates the use of our approach in attempting to decipher the complex pathological processes leading to multiple sclerosis and other neurodegenerative diseases.


Asunto(s)
Proteínas del Líquido Cefalorraquídeo/química , Esclerosis Múltiple/líquido cefalorraquídeo , Adulto , Anciano , Axones/metabolismo , Biotinilación , Western Blotting , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas del Líquido Cefalorraquídeo/inmunología , Proteínas del Líquido Cefalorraquídeo/metabolismo , Electroforesis en Gel Bidimensional , Metabolismo Energético , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/enzimología , Vaina de Mielina/inmunología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteómica , Ubiquitina Tiolesterasa/metabolismo
11.
Front Cell Neurosci ; 17: 1197492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361998

RESUMEN

Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair. This review highlights the molecular and cellular mechanisms that drive neurodegeneration as a consequence of chronic-active inflammation and outlines plausible therapeutic approaches to antagonize the MAIFs during the evolution of neuroinflammatory lesions. Moreover, investigative lines for translation of targeted therapies against these myelin inhibitors are defined with an emphasis on the chief MAIF, Nogo-A, that may demonstrate clinical efficacy of neurorepair during progressive MS.

12.
Healthcare (Basel) ; 11(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37297725

RESUMEN

Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte-MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing-remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.

13.
Brain Commun ; 5(2): fcad108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091588

RESUMEN

Nogo receptor 1 is the high affinity receptor for the potent myelin-associated inhibitory factors that make up part of the inflammatory extracellular milieu during experimental autoimmune encephalomyelitis. Signalling through the Nogo receptor 1 complex has been shown to be associated with axonal degeneration in an animal model of multiple sclerosis, and neuronal deletion of this receptor homologue, in a disease specific manner, is associated with preserving axons even in the context of neuroinflammation. The local delivery of Nogo receptor(1-310)-Fc, a therapeutic fusion protein, has been successfully applied as a treatment in animal models of spinal cord injury and glaucoma. As multiple sclerosis and experimental autoimmune encephalomyelitis exhibit large numbers of inflammatory cell infiltrates within the CNS lesions, we utilized transplantable haematopoietic stem cells as a cellular delivery method of the Nogo receptor(1-310)-Fc fusion protein. We identified CNS-infiltrating macrophages as the predominant immune-positive cell type that overexpressed myc-tagged Nogo receptor(1-310)-Fc fusion protein at the peak stage of experimental autoimmune encephalomyelitis. These differentiated phagocytes were predominant during the extensive demyelination and axonal damage, which are associated with the engulfment of the protein complex of Nogo receptor(1-310)-Fc binding to myelin ligands. Importantly, mice transplanted with haematopoietic stem cells transduced with the lentiviral vector carrying Nogo receptor(1-310)-Fc and recovered from the peak of neurological decline during experimental autoimmune encephalomyelitis, exhibiting axonal regeneration and eventual remyelination in the white matter tracts. There were no immunomodulatory effects of the transplanted, genetically modified haematopoietic stem cells on immune cell lineages of recipient female mice induced with experimental autoimmune encephalomyelitis. We propose that cellular delivery of Nogo receptor(1-310)-Fc fusion protein through genetically modified haematopoietic stem cells can modulate multifocal experimental autoimmune encephalomyelitis lesions and potentiate neurological recovery.

14.
J Biol Chem ; 286(26): 23407-18, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21550974

RESUMEN

Neuron polarization is essential for the formation of one axon and multiple dendrites, establishing the neuronal circuitry. Phosphoinositide 3-kinase (PI3K) signaling promotes axon selection and elongation. Here we report in hippocampal neurons siRNA knockdown of the proline-rich inositol polyphosphate 5-phosphatase (PIPP), which degrades PI3K-generated PtdIns(3,4,5)P(3), results in multiple hyperelongated axons consistent with a polarization defect. We identify collapsin response mediator protein 2 (CRMP2), which regulates axon selection by promoting WAVE1 delivery via Kinesin-1 motors to the axon growth cone, as a PIPP-interacting protein by Y2H screening, direct binding studies, and coimmunoprecipitation of an endogenous PIPP, CRMP2, and Kinesin-1 complex from brain lysates. The C-terminal growth cone-targeting domain of PIPP facilitates its interaction with CRMP2. PIPP growth cone localization is CRMP2-dependent. PIPP knockdown in PC12 cells promotes neurite elongation, WAVE1 and Kinesin-1 growth cone localization, whereas knockdown of CRMP2 exhibits the opposite phenotype, with shorter neurites and decreased WAVE1/Kinesin-1 at the growth cone. In contrast, CRMP2 overexpression promotes neurite elongation, a phenotype rescued by full-length PIPP, or expression of the CRMP2-binding PIPP domain. Therefore this study identifies PIPP and CRMP2 exert opposing roles in promoting axon selection and neurite elongation and the complex between these proteins serves to regulate the localization of effectors that promote neurite extension.


Asunto(s)
Conos de Crecimiento/metabolismo , Hipocampo/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Hipocampo/citología , Inositol Polifosfato 5-Fosfatasas , Péptidos y Proteínas de Señalización Intercelular , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Células PC12 , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Ratas , Ratas Sprague-Dawley , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
15.
Neurosci Lett ; 766: 136287, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634393

RESUMEN

Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.


Asunto(s)
Cuerpo Calloso , Enfermedades Desmielinizantes/metabolismo , Prealbúmina/deficiencia , Remielinización/fisiología , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Brain Pathol ; 32(4): e13040, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845781

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a basic and reliable model used to study clinical and pathological hallmarks of multiple sclerosis (MS) in rodents. Several studies suggest neural precursor cells (NPCs) as a significant research tool while reporting that transplanted NPCs are a promising therapeutic approach to treating neurological disorders, such as MS. The main objective was to approach a preclinical, in vivo scenario of oligodendrogenesis with NPCs, targeting the main chronic demyelinated lumbosacral milieu of EAE, via the least invasive delivery method which is lumbar puncture. We utilized MOG35-55 peptide to induce EAE in C57BL/6 mice and prior to the acute relapse, we intervened with either the traceable GFP+ cellular therapy or saline solution in the intrathecal space of their lumbar spine. A BrdU injection, which enabled us to monitor endogenous proliferation, marked the endpoint 50 days post-induction (50 dpi). Neuropathology with high-throughput, triple immunofluorescent, and transmission electron microscopy (TEM) data were extracted and analyzed. The experimental treatment attenuated the chronic phase of EAE (50 dpi; score <1) following an acute, clinical relapse. Myelination and axonal integrity were rescued in the NPC-treated animals along with suppressed immune populations. The differentiation profile of the exogenous NPCs and endogenous BrdU+ cells was location-dependent where GFP+ -rich areas drove undifferentiated phenotypes toward the oligodendrocyte lineage. In situ oligodendrocyte enrichment was demonstrated through increased (p < 0.001) gap junction channels of Cx32 and Cx47, reliable markers for proliferative oligodendroglia syncytium. TEM morphometric analysis ultimately manifested an increased g-ratio in lumbosacral fibers of the recovered animals (p < 0.001). Herein, we suggest that a single, lumbar intrathecal administration of NPCs capacitated a viable cellular load and resulted in clinical and pathological amelioration, stimulating resident OPCs to overcome the remyelination failure in EAE demyelinating locale.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Células-Madre Neurales , Animales , Bromodesoxiuridina , Diferenciación Celular , Proliferación Celular , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia , Células-Madre Neurales/patología , Oligodendroglía/patología
17.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497029

RESUMEN

Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.


Asunto(s)
Microglía , Esclerosis Múltiple , Animales , Microglía/metabolismo , Proteínas Nogo/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Transducción de Señal , Proteínas de la Mielina/metabolismo , Inflamación/patología
18.
Front Pharmacol ; 13: 934971, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133808

RESUMEN

Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through ß1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.

19.
Nat Med ; 8(6): 613-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12042813

RESUMEN

Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS. Identification of molecular mechanisms that mediate the stress response of oligodendrocytes to optimize their survival would serve this need. This study shows that the neurotrophic cytokine leukemia inhibitory factor (LIF) directly prevents oligodendrocyte death in animal models of MS. We also demonstrate that this therapeutic effect complements endogenous LIF receptor signaling, which already serves to limit oligodendrocyte loss during immune attack. Our results provide a novel approach for the treatment of MS.


Asunto(s)
Inhibidores de Crecimiento/fisiología , Interleucina-6 , Linfocinas/fisiología , Oligodendroglía/citología , Receptores de Citocinas/fisiología , Secuencia de Aminoácidos , Animales , Supervivencia Celular , Encefalomielitis Autoinmune Experimental/patología , Inhibidores de Crecimiento/farmacología , Factor Inhibidor de Leucemia , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia , Linfocinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Datos de Secuencia Molecular , Oligodendroglía/patología , Fragmentos de Péptidos/inmunología , Receptores OSM-LIF , Transducción de Señal
20.
Sci Rep ; 11(1): 2890, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536561

RESUMEN

We have previously reported evidence that Nogo-A activation of Nogo-receptor 1 (NgR1) can drive axonal dystrophy during the neurological progression of experimental autoimmune encephalomyelitis (EAE). However, the B-cell activating factor (BAFF/BlyS) may also be an important ligand of NgR during neuroinflammation. In the current study we define that NgR1 and its homologs may contribute to immune cell signaling during EAE. Meningeal B-cells expressing NgR1 and NgR3 were identified within the lumbosacral spinal cords of ngr1+/+ EAE-induced mice at clinical score 1. Furthermore, increased secretion of immunoglobulins that bound to central nervous system myelin were shown to be generated from isolated NgR1- and NgR3-expressing B-cells of ngr1+/+ EAE-induced mice. In vitro BAFF stimulation of NgR1- and NgR3-expressing B cells, directed them into the cell cycle DNA synthesis phase. However, when we antagonized BAFF signaling by co-incubation with recombinant BAFF-R, NgR1-Fc, or NgR3 peptides, the B cells remained in the G0/G1 phase. The data suggest that B cells express NgR1 and NgR3 during EAE, being localized to infiltrates of the meninges and that their regulation is governed by BAFF signaling.


Asunto(s)
Factor Activador de Células B/metabolismo , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Meninges/patología , Esclerosis Múltiple/inmunología , Animales , Linfocitos B/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Meninges/inmunología , Ratones , Ratones Noqueados , Esclerosis Múltiple/patología , Proteínas Nogo/metabolismo , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Receptores Nogo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA