Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Spinal Cord ; 60(4): 312-319, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34561547

RESUMEN

STUDY DESIGN: Preclinical pilot study. OBJECTIVES: To test the hypothesis that spinal opioidergic circuitry contributes to muscle stretch-induced locomotor deficits. SETTING: Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS: A pilot study with eight female Sprague-Dawley rats that received 25 g-cm T10 contusion injuries and recovered for 5 weeks. Rats were divided into two groups with one group receiving subcutaneous injections of naltrexone dissolved in saline (15 mg/kg) or an equal volume of saline. Each group received a daily 24-minute stretching protocol during weeks 6, 8, and 11 post-injury. Locomotor function was assessed throughout using the BBB Open Field Locomotor Scale. RESULTS: Consistent with previous findings, stretching reduced locomotor function in both naltrexone and saline groups. However, the loss of locomotor function appeared earlier in the naltrexone group. Animals in both groups had a similar rate of recovery following the termination of stretching. Interestingly, the administration of naltrexone did not influence acute thermal cutaneous nociceptive responses as measured by a tail-flick assay but caused a significant increase in spasticity following stretch. CONCLUSIONS: The results of this study suggest that the endogenous opioid system plays a role in modulating the negative impact of muscle stretch on spinal cord motor circuitry that is vulnerable due to loss of descending input. The observed actions of the broad-spectrum opioid antagonist naltrexone imply that pharmaceuticals targeting the endogenous opioid system post-SCI may have unintended consequences.


Asunto(s)
Antagonistas de Narcóticos , Traumatismos de la Médula Espinal , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Miembro Posterior , Humanos , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Proyectos Piloto , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
2.
J Neurosci ; 36(15): 4259-75, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27076424

RESUMEN

Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT: Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Axones/fisiología , Proteínas del Citoesqueleto/fisiología , Factores de Crecimiento Nervioso/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular/genética , Fosfatidilinositol 3-Quinasa Clase Ia/fisiología , Proteínas del Citoesqueleto/genética , Endosomas/metabolismo , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Seudópodos/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Receptor trkA/fisiología , Transducción de Señal/genética
3.
BMC Genomics ; 18(Suppl 10): 875, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29244006

RESUMEN

BACKGROUND: Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. RESULTS: We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. CONCLUSION: Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.


Asunto(s)
Bases de Datos Genéticas , Análisis de Secuencia por Matrices de Oligonucleótidos , Estadística como Asunto/métodos , Perfilación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular
4.
Brain ; 139(Pt 1): 259-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26614754

RESUMEN

There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord. This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body. Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3 are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke.


Asunto(s)
Neurotrofina 3/administración & dosificación , Neurotrofina 3/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Adenoviridae , Factores de Edad , Animales , Endotelina-1/administración & dosificación , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Intramusculares , Locomoción/efectos de los fármacos , Imagen por Resonancia Magnética , Microinyecciones , Músculo Esquelético/metabolismo , Neuroimagen , Neurotrofina 3/sangre , Neurotrofina 3/metabolismo , Tractos Piramidales/efectos de los fármacos , Ratas , Médula Espinal/metabolismo , Accidente Cerebrovascular/inducido químicamente , Factores de Tiempo
5.
Am J Physiol Regul Integr Comp Physiol ; 308(12): R1021-33, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25855310

RESUMEN

The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.


Asunto(s)
Glicoproteínas/metabolismo , Lectinas/metabolismo , Neuronas Aferentes/metabolismo , Ganglio Nudoso/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Sustancia P/metabolismo , Vejiga Urinaria/inervación , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Plasticidad Neuronal , Ganglio Nudoso/fisiopatología , Ratas Wistar , Traumatismos de la Médula Espinal/fisiopatología , Versicanos
6.
J Neurophysiol ; 112(6): 1392-408, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24872531

RESUMEN

Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted.


Asunto(s)
Colon/inervación , Ganglios Espinales/fisiología , Neuronas Aferentes/clasificación , Pene/inervación , Uretra/inervación , Acetilcolina/farmacología , Potenciales de Acción , Adenosina Trifosfato/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , Colon/fisiología , Ganglios Espinales/citología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Lectinas/genética , Lectinas/metabolismo , Masculino , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Pene/fisiología , Ratas , Ratas Sprague-Dawley , Sustancia P/genética , Sustancia P/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Uretra/fisiología , Versicanos
7.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352413

RESUMEN

In the course of performing a detailed dissection of adult rat to map the cutaneous nerves of cervical, thoracic, and lumbar levels a small and unexpected structure was isolated. It appeared to be a cutaneous striated muscle and was observed in both male and female rats and in mice but absent from cats and humans. With the skin reflected laterally from midline, the muscle lies closely apposed to the lateral border of the Thoracic Trapezius (Spinotrapezius) muscle and is easily missed in standard gross dissections. Focussed prosections were performed to identify the origin, insertion, and course of gross innervation. Identification of each of these elements showed them to be distinct from the nearby Trapezius and Cutaneous Trunci (Cutaneous Maximus in mouse) muscles. The striated muscle nature of the structure was validated with whole-mount microscopy. Consulting a range of published rodent anatomical atlases and gross anatomical experts revealed no prior descriptions. This preliminary report is an opportunity for the anatomical and research communities to provide input to either confirm the novelty of this muscle or refer to prior published descriptions in rodents or other species while the muscle, its innervation, and function are further characterized. Presuming this muscle is indeed novel, the name "Cutaneous Scapularis muscle" is proposed in accord with general principles of the anatomical field.

8.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778366

RESUMEN

Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.

9.
J Neurotrauma ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37917105

RESUMEN

Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.

10.
BMC Bioinformatics ; 13: 229, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22967011

RESUMEN

BACKGROUND: High-throughput molecular biology techniques yield vast amounts of data, often by detecting small portions of ribonucleotides corresponding to specific identifiers. Existing bioinformatic methodologies categorize and compare these elements using inferred descriptive annotation given this sequence information irrespective of the fact that it may not be representative of the identifier as a whole. RESULTS: All annotations, no matter the granularity, can be aligned to genomic sequences and therefore annotated by genomic intervals. We have developed AbsIDconvert, a methodology for converting between genomic identifiers by first mapping them onto a common universal coordinate system using an interval tree which is subsequently queried for overlapping identifiers. AbsIDconvert has many potential uses, including gene identifier conversion, identification of features within a genomic region, and cross-species comparisons. The utility is demonstrated in three case studies: 1) comparative genomic study mapping plasmodium gene sequences to corresponding human and mosquito transcriptional regions; 2) cross-species study of Incyte clone sequences; and 3) analysis of human Ensembl transcripts mapped by Affymetrix®; and Agilent microarray probes. AbsIDconvert currently supports ID conversion of 53 species for a given list of input identifiers, genomic sequence, or genome intervals. CONCLUSION: AbsIDconvert provides an efficient and reliable mechanism for conversion between identifier domains of interest. The flexibility of this tool allows for custom definition identifier domains contingent upon the availability and determination of a genomic mapping interval. As the genomes and the sequences for genetic elements are further refined, this tool will become increasingly useful and accurate. AbsIDconvert is freely available as a web application or downloadable as a virtual machine at: http://bioinformatics.louisville.edu/abid/.


Asunto(s)
Mapeo Cromosómico , Biología Computacional/métodos , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Animales , Culicidae/genética , Genoma , Humanos , Internet , Plasmodium/genética
11.
Hum Mol Genet ; 19(20): 3895-905, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20639395

RESUMEN

Proximal spinal muscular atrophy (SMA) is a debilitating neurological disease marked by isolated lower motor neuron death and subsequent atrophy of skeletal muscle. Historically, SMA pathology was thought to be limited to lower motor neurons and the skeletal muscles they control, yet there are several reports describing the coincidence of cardiovascular abnormalities in SMA patients. As new therapies for SMA emerge, it is necessary to determine whether these non-neuromuscular systems need to be targeted. Therefore, we have characterized left ventricular (LV) function of SMA mice (SMN2+/+; SMNΔ7+/+; Smn-/-) and compared it with that of their unaffected littermates at 7 and 14 days of age. Anatomical and physiological measurements made by electrocardiogram and echocardiography show that affected mouse pups have a dramatic decrease in cardiac function. At 14 days of age, SMA mice have bradycardia and develop a marked dilated cardiomyopathy with a concomitant decrease in contractility. Signs of decreased cardiac function are also apparent as early as 7 days of age in SMA animals. Delivery of a survival motor neuron-1 transgene using a self-complementary adeno-associated virus serotype 9 abolished the symptom of bradycardia and significantly decreased the severity of the heart defect. We conclude that severe SMA animals have compromised cardiac function resulting at least partially from early bradycardia, which is likely attributable to aberrant autonomic signaling. Further cardiographic studies of human SMA patients are needed to clarify the clinical relevance of these findings from this SMA mouse.


Asunto(s)
Bradicardia , Dependovirus/genética , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/fisiopatología , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Bradicardia/terapia , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Terapia Genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/complicaciones , Contracción Miocárdica , Proteínas del Tejido Nervioso , Proteínas del Complejo SMN , Función Ventricular Izquierda
12.
Eur J Neurosci ; 32(6): 997-1005, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20849530

RESUMEN

We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed, indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long-lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury.


Asunto(s)
Dependovirus/fisiología , Sistemas de Liberación de Medicamentos , Neuronas Motoras/fisiología , Neurotrofina 3/administración & dosificación , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Intramusculares , Ratas , Ratas Sprague-Dawley
13.
Data Brief ; 28: 105056, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32226812

RESUMEN

Reduced muscle mass and increased fatiguability are major complications after spinal cord injury (SCI), and often hinder the rehabilitation efforts of patients. Such detriments to the musculoskeletal system, and the concomitant reduction in level of activity, contribute to secondary complications such as cardiovascular disease, diabetes, bladder dysfunction and liver damage. As a result of decreased weight-bearing capacity after SCI, muscles undergo morphological, metabolic, and contractile changes. Recent studies have shown that exercise after SCI decreases muscle wasting and reduces the burden of secondary complications. Here, we describe RNA sequencing data for detecting chronic transcriptomic changes in the rat soleus after SCI at two levels of injury severity, under conditions of restricted in-cage activity and two methods of applied exercise, swimming or shallow water walking. We demonstrate that the sequenced data are of good quality and show a high alignment rate to the Rattus norvegicus reference assembly (Rn6). The raw data, along with UCSC Genome Browser tracks created to facilitate exploration of gene expression, are available in the NCBI Gene Expression Omnibus (GEO; GSE129694).

14.
Front Genet ; 10: 182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915105

RESUMEN

The length of untranslated regions at the 3' end of transcripts (3'UTRs) is regulated by alternate polyadenylation (APA). 3'UTRs contain regions that harbor binding motifs for regulatory molecules. However, the mechanisms that coordinate the 3'UTR length of specific groups of transcripts are not well-understood. We therefore developed a method, CSI-UTR, that models 3'UTR structure as tandem segments between functional alternative-polyadenylation sites (termed cleavage site intervals-CSIs). This approach facilitated (1) profiling of 3'UTR isoform expression changes and (2) statistical enrichment of putative regulatory motifs. CSI-UTR analysis is UTR-annotation independent and can interrogate legacy data generated from standard RNA-Seq libraries. CSI-UTR identified a set of CSIs in human and rodent transcriptomes. Analysis of RNA-Seq datasets from neural tissue identified differential expression events within 3'UTRs not detected by standard gene-based differential expression analyses. Further, in many instances 3'UTR and CDS from the same gene were regulated differently. This modulation of motifs for RNA-interacting molecules with potential condition-dependent and tissue-specific RNA binding partners near the polyA signal and CSI junction may play a mechanistic role in the specificity of alternative polyadenylation. Source code, CSI BED files and example datasets are available at: https://github.com/UofLBioinformatics/CSI-UTR.

15.
Exp Neurol ; 318: 267-276, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30880143

RESUMEN

In the course of investigating how common clinical treatments and adaptive technologies affect recovery after spinal cord injury (SCI), we discovered that a clinically-modeled hindlimb stretching protocol dramatically, but transiently, reduces locomotor function. Nociceptive sensory input is capable of altering motor output at the spinal level, and nociceptive neurons are sensitized after SCI. Here we tested the hypotheses that stretch-induced locomotor deficits are dependent on nociceptive afferents by depleting TRPV1+ sensory afferents using capsaicin injections in neonatal rats. Following maturation, animals received 25g-cm contusive SCI at T10. After plateau of locomotor recovery at 6 weeks, daily stretching was performed for 3 weeks, followed by 2 weeks without stretch, and again for two additional weeks. Animals were sacrificed 2 h after the last stretching session for histological assessments. Consistent with previous findings, stretch-induced drops in locomotor function were observed in nociceptor-intact animals but were nearly absent in nociceptor-depleted animals. These functional changes were accompanied by corresponding increases in the number of c-Fos+ nuclei throughout the lumbar enlargement. As expected, nociceptor-depleted animals had very little CGRP+ axonal innervation of the dorsal horn. Nociceptor-intact stretched animals had significantly higher levels of CGRP+ as compared to non-stretched SCI rats, suggesting that stretching promoted intraspinal CGRP+ sprouting. These results indicate that stretch-induced locomotor dysfunction in animals with incomplete SCI involves C-fibers, adding a negative post-SCI role to their adaptive roles (e.g., bladder control), and suggesting that the clinical use of muscle stretching to combat contractures and spasticity may be unintentionally detrimental to locomotor function.


Asunto(s)
Locomoción/fisiología , Ejercicios de Estiramiento Muscular/efectos adversos , Nociceptores , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Miembro Posterior , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley
16.
Sci Data ; 6(1): 88, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197156

RESUMEN

Multi-organ dysfunction is a major complication after spinal cord injury (SCI). In addition to local injury within the spinal cord, SCI causes major disruption to the peripheral organ innervation and regulation. The liver contains sympathetic, parasympathetic, and small sensory axons. The bi-directional signaling of sensory dorsal root ganglion (DRG) neurons that provide both efferent and afferent information is of key importance as it allows sensory neurons and peripheral organs to affect each other. SCI-induced liver inflammation precedes and may exacerbate intraspinal inflammation and pathology after SCI, which may be modulated by activity and exercise. In this study, we collected comprehensive gene expression data through RNA sequencing of liver tissue from rats with chronic SCI to determine the effects of activity and exercise on those expression patterns. The sequenced data are of high quality and show a high alignment rate to the Rn6 genome. Gene expression is demonstrated for genes associated with known liver pathologies. UCSC Genome Browser expression tracks are provided with the data to facilitate exploration of the samples.


Asunto(s)
Hígado/metabolismo , Traumatismos de la Médula Espinal , Transcriptoma , Animales , Enfermedad Crónica , Actividad Motora , Condicionamiento Físico Animal , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
17.
Sci Data ; 6(1): 83, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175296

RESUMEN

Spinal cord injury (SCI) is a devastating clinical condition resulting in significant disabilities. Apart from local injury within the spinal cord, SCI patients develop a myriad of complications including multi-organ dysfunction. Some of the dysfunctions may be directly or indirectly related to the sensory neurons of the dorsal root ganglia (DRG), which signal to both the spinal cord and the peripheral organs. After SCI, some classes of DRG neurons exhibit sensitization and undergo axonal sprouting both peripherally and centrally. Such physiological and anatomical re-organization after SCI contributes to both adaptive and maladaptive plasticity processes, which may be modulated by activity and exercise. In this study, we collected comprehensive gene expression data in whole DRG below the levels of the injury to compare the effects of SCI with and without two different forms of exercise in rats.


Asunto(s)
Ganglios Espinales/metabolismo , Traumatismos de la Médula Espinal , Transcriptoma , Animales , Conducta Animal , Plasticidad Neuronal , Neuronas Aferentes/metabolismo , Condicionamiento Físico Animal , Ratas , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
18.
J Neurosci ; 27(16): 4460-71, 2007 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-17442831

RESUMEN

Although recovery from spinal cord injury is generally meager, evidence suggests that step training can improve stepping performance, particularly after neonatal spinal injury. The location and nature of the changes in neural substrates underlying the behavioral improvements are not well understood. We examined the kinematics of stepping performance and cellular and synaptic electrophysiological parameters in ankle extensor motoneurons in nontrained and treadmill-trained rats, all receiving a complete spinal transection as neonates. For comparison, electrophysiological experiments included animals injured as young adults, which are far less responsive to training. Recovery of treadmill stepping was associated with significant changes in the cellular properties of motoneurons and their synaptic input from spinal white matter [ipsilateral ventrolateral funiculus (VLF)] and muscle spindle afferents. A strong correlation was found between the effectiveness of step training and the amplitude of both the action potential afterhyperpolarization and synaptic inputs to motoneurons (from peripheral nerve and VLF). These changes were absent if step training was unsuccessful, but other spinal projections, apparently inhibitory to step training, became evident. Greater plasticity of axonal projections after neonatal than after adult injury was suggested by anatomical demonstration of denser VLF projections to hindlimb motoneurons after neonatal injury. This finding confirmed electrophysiological measurements and provides a possible mechanism underlying the greater training susceptibility of animals injured as neonates. Thus, we have demonstrated an "age-at-injury"-related difference that may influence training effectiveness, that successful treadmill step training can alter electrophysiological parameters in the transected spinal cord, and that activation of different pathways may prevent functional improvement.


Asunto(s)
Actividad Motora , Neuronas Motoras , Plasticidad Neuronal , Traumatismos de la Médula Espinal/fisiopatología , Transmisión Sináptica , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Femenino , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción , Vértebras Torácicas
19.
Neurosci Lett ; 660: 51-56, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899787

RESUMEN

Ryanodine receptors (RyRs) are highly conductive intracellular Ca2+ release channels and are widely expressed in many tissues, including the central nervous system. RyRs have been implicated in intracellular Ca2+ overload which can drive secondary damage following traumatic injury to the spinal cord (SCI), but the spatiotemporal expression of the three isoforms of RyRs (RyR1-3) after SCI remains unknown. Here, we analyzed the gene and protein expression of RyR isoforms in the murine lumbar dorsal root ganglion (DRG) and the spinal cord lesion site at 1, 2 and 7 d after a mild contusion SCI. Quantitative RT PCR analysis revealed that RyR3 was significantly increased in lumbar DRGs and at the lesion site at 1 and 2 d post contusion compared to sham (laminectomy only) controls. Additionally, RyR2 expression was increased at 1 d post injury within the lesion site. RyR2 and -3 protein expression was localized to lumbar DRG neurons and their spinal projections within the lesion site acutely after SCI. In contrast, RyR1 expression within the DRG and lesion site remained unaltered following trauma. Our study shows that SCI initiates acute differential expression of RyR isoforms in DRG and spinal cord.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/genética , Traumatismos de la Médula Espinal/metabolismo , Animales , Ganglios Espinales/metabolismo , Expresión Génica , Ratones , Ratones Transgénicos , Isoformas de Proteínas/genética
20.
Exp Neurol ; 283(Pt A): 413-27, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27264359

RESUMEN

Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage.


Asunto(s)
Nocicepción/fisiología , Dolor Nociceptivo/etiología , Células Receptoras Sensoriales/metabolismo , Enfermedades de la Piel/complicaciones , Enfermedades de la Piel/patología , Factor de Transcripción 3/metabolismo , Regulación hacia Arriba/fisiología , Animales , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Femenino , Lateralidad Funcional , Proteína GAP-43/metabolismo , Ganglios Espinales/patología , Glicoproteínas/metabolismo , Lectinas/metabolismo , Neuropéptido Y/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción 3/genética , Versicanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA