Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 29: 100538, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38317851

RESUMEN

Accurate dosimetry of ultra-high dose-rate beams using diamond detectors remains challenging, primarily due to the elevated photocurrent peaks exceeding the input dynamics of precision electrometers. This work aimed at demonstrating the effectiveness of compact gated-integration electronics in conditioning the current peaks (>20 mA) generated by a highly sensitive (S ≃ 26 nC/Gy) custom-made diamond photoconductor under electron FLASH irradiation, as well as in real-time monitoring of beam dose and dose-rate. For the emerging FLASH technology, this study provided a new perspective on using commercially available diamond dosimeters with high sensitivity, currently employed in conventional radiotherapy.

2.
Nanomicro Lett ; 16(1): 182, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668830

RESUMEN

Metal-halide perovskites are revolutionizing the world of X-ray detectors, due to the development of sensitive, fast, and cost-effective devices. Self-powered operation, ensuring portability and low power consumption, has also been recently demonstrated in both bulk materials and thin films. However, the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours, often reporting degradation of the detection performance. Here it is shown that self-powered direct X-ray detectors, fabricated starting from a FAPbBr3 submicrometer-thick film deposition onto a mesoporous TiO2 scaffold, can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss, demonstrating ultra-high operational stability and excellent repeatability. No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy, revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film. In addition, trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy-1 cm-3 at 0 V, an unprecedented value in the field of thin-film-based photoconductors and photodiodes for "hard" X-rays. Finally, prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.

3.
Materials (Basel) ; 17(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276458

RESUMEN

Orthorhombic κ-Ga2O3 thin films were grown for the first time on polycrystalline diamond free-standing substrates by metal-organic vapor phase epitaxy at a temperature of 650 °C. Structural, morphological, electrical, and photoelectronic properties of the obtained heterostructures were evaluated by optical microscopy, X-ray diffraction, current-voltage measurements, and spectral photoconductivity, respectively. Results show that a very slow cooling, performed at low pressure (100 mbar) under a controlled He flow soon after the growth process, is mandatory to improve the quality of the κ-Ga2O3 epitaxial thin film, ensuring a good adhesion to the diamond substrate, an optimal morphology, and a lower density of electrically active defects. This paves the way for the future development of novel hybrid architectures for UV and ionizing radiation detection, exploiting the unique features of gallium oxide and diamond as wide-bandgap semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA