Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Glob Chang Biol ; 27(14): 3336-3349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910268

RESUMEN

The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants-that is, increased photosynthetic uptake of CO2 by leaves and enhanced water-use efficiency (WUE). Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture (SM) savings at large scale is poorly understood. Drylands provide a natural experimental setting to detect the CO2 fertilization effect on plant growth since foliage amount, plant water-use and photosynthesis are all tightly coupled in water-limited ecosystems. A long-term change in the response of leaf area index (LAI, a measure of foliage amount) to changes in SM is likely to stem from changing water demand of primary productivity in water-limited ecosystems and is a proxy for changes in WUE. Using 34-year satellite observations of LAI and SM over tropical and subtropical drylands, we identify that a 1% increment in SM leads to 0.15% (±0.008, 95% confidence interval) and 0.51% (±0.01, 95% confidence interval) increments in LAI during 1982-1998 and 1999-2015, respectively. The increasing response of LAI to SM has contributed 7.2% (±3.0%, 95% confidence interval) to total dryland greening during 1999-2015 compared to 1982-1998. The increasing response of LAI to SM is consistent with the CO2 fertilization effect on WUE in water-limited ecosystems, indicating that a given amount of SM has sustained greater amounts of photosynthetic foliage over time. The LAI responses to changes in SM from seven dynamic global vegetation models are not always consistent with observations, highlighting the need for improved process knowledge of terrestrial ecosystem responses to rising atmospheric CO2 concentration.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/análisis , Fertilización , Fotosíntesis , Suelo
2.
Environ Sci Policy ; 122: 116-126, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34345221

RESUMEN

Greenhouse gas (GHG) emission inventories represent the link between national and international political actions on climate change, and climate and environmental sciences. Inventory agencies need to include, in national GHG inventories, emission and removal estimates based on scientific data following specific reporting guidance under the United Nation Framework Convention on Climate Change (UNFCCC) and the Paris Agreement, using the methodologies defined in the Intergovernmental Panel on Climate Change (IPCC) Guidelines. Often however, research communities and inventory agencies have approached the problem of climate change from different angles and by using terminologies, metrics, rules and approaches that do not always match. This is particularly true dealing with "Land Use, Land-Use Change and Forestry" (LULUCF), the most challenging among the inventory sectors to deal with, mainly because of high level of complexity of its carbon dynamics and the difficulties in disaggregating the fluxes between those caused by natural and anthropogenic processes. In this paper, we facilitate the understanding by research communities of the current (UNFCCC) and future (under the Paris Agreement) reporting requirements, and we identify the main issues and topics that should be considered when targeting improvement of the GHG inventory. In relation to these topics, we describe where and how the research community can contribute to producing useful inputs, data, methods and solutions for inventory agencies and policy makers, on the basis of available literature. However, a greater effort by both communities is desirable for closer cooperation and collaboration, for data sharing and the understanding of respective and common aims.

3.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31828914

RESUMEN

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Asunto(s)
Dióxido de Carbono , Ecosistema , África , Asia , Europa (Continente) , América del Norte , América del Sur
4.
Proc Natl Acad Sci U S A ; 111(9): 3280-5, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344265

RESUMEN

Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.


Asunto(s)
Atmósfera/química , Ciclo del Carbono/fisiología , Dióxido de Carbono/análisis , Carbono/farmacocinética , Cambio Climático , Modelos Teóricos , Plantas/metabolismo , Simulación por Computador , Predicción , Factores de Tiempo , Incertidumbre
6.
Nature ; 458(7241): 1009-13, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19396142

RESUMEN

Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.


Asunto(s)
Carbono/metabolismo , Ecosistema , Combustibles Fósiles/historia , Atmósfera/química , Biomasa , Carbono/análisis , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , China , Agricultura Forestal/historia , Historia del Siglo XX , Suelo/análisis , Árboles/metabolismo
7.
Nature ; 451(7174): 49-52, 2008 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-18172494

RESUMEN

The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Estaciones del Año , Temperatura , Atmósfera/química , Biomasa , Dióxido de Carbono/análisis , Respiración de la Célula , Combustibles Fósiles , Geografía , Efecto Invernadero , Historia del Siglo XX , Historia del Siglo XXI , Océanos y Mares , Fotosíntesis , Transpiración de Plantas , Plantas/metabolismo , Lluvia , Suelo/análisis , Agua/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(52): 22411-5, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018776

RESUMEN

Improved global estimates of terrestrial photosynthesis and respiration are critical for predicting the rate of change in atmospheric CO(2). The oxygen isotopic composition of atmospheric CO(2) can be used to estimate these fluxes because oxygen isotopic exchange between CO(2) and water creates distinct isotopic flux signatures. The enzyme carbonic anhydrase (CA) is known to accelerate this exchange in leaves, but the possibility of CA activity in soils is commonly neglected. Here, we report widespread accelerated soil CO(2) hydration. Exchange was 10-300 times faster than the uncatalyzed rate, consistent with typical population sizes for CA-containing soil microorganisms. Including accelerated soil hydration in global model simulations modifies contributions from soil and foliage to the global CO(18)O budget and eliminates persistent discrepancies existing between model and atmospheric observations. This enhanced soil hydration also increases the differences between the isotopic signatures of photosynthesis and respiration, particularly in the tropics, increasing the precision of CO(2) gross fluxes obtained by using the delta(18)O of atmospheric CO(2) by 50%.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Isótopos de Oxígeno/análisis , Microbiología del Suelo , Anhidrasas Carbónicas/metabolismo , Cambio Climático , Modelos Biológicos , Estaciones del Año
9.
Sci Rep ; 8(1): 10420, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29973703

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Adv ; 4(9): eaat8785, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255149

RESUMEN

The Amazon basin is the largest watershed on Earth. Although the variability of the Amazon hydrological cycle has been increasing since the late 1990s, its underlying causes have remained elusive. We use water levels in the Amazon River to quantify changes in extreme events and then analyze their cause. Despite continuing research emphasis on droughts, the largest change over recent decades is a marked increase in very severe floods. Increased flooding is linked to a strengthening of the Walker circulation, resulting from strong tropical Atlantic warming and tropical Pacific cooling. Atlantic warming due to combined anthropogenic and natural factors has contributed to enhance the change in atmospheric circulation. Whether this anomalous increase in flooding will last depends on the evolution of the tropical inter-ocean temperature difference.

11.
Sci Rep ; 8(1): 1973, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386626

RESUMEN

Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr-1 to 166 ± 10 PgCyr-1, bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr-1. Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.


Asunto(s)
Carbono/análisis , Clorofila/análisis , Internacionalidad , Luz Solar , Fluorescencia , Geografía , Estaciones del Año , Factores de Tiempo , Incertidumbre
12.
Nat Commun ; 5: 5018, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25318638

RESUMEN

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.


Asunto(s)
Clima , Ecosistema , Monitoreo del Ambiente/métodos , Temperatura , Regiones Árticas , Simulación por Computador , Sequías , Geografía , Calentamiento Global , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Plantas , Poaceae , Imágenes Satelitales , Estaciones del Año , Suelo
13.
Glob Chang Biol ; 19(7): 2117-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23504870

RESUMEN

The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 ± 15 Pg C yr(-1) ) than JU11 (118 ± 6 Pg C yr(-1) ). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5-20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100 ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 ± 0.8 Pg C yr(-1) is remarkably close to the mean value of RLS (2.1 ± 1.2 Pg C yr(-1) ). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980-2009. Both model-to-model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is -3.0 ± 1.5 Pg C yr(-1) °C(-1) , within the uncertainty of what derived from RLS (-3.9 ± 1.1 Pg C yr(-1) °C(-1) ). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation-based GPP and NBP can be fortuitous. Carbon-nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Cambio Climático , Ecosistema , Modelos Teóricos , Poaceae/crecimiento & desarrollo , Filogeografía
14.
Plant Cell Environ ; 30(8): 892-909, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17617818

RESUMEN

We described advection and diffusion of water isotopologues in leaves in the non-steady state, applied specifically to amphistomatous leaves. This explains the isotopic enrichment of leaf water from the xylem to the mesophyll, and we showed how it relates to earlier models of leaf water enrichment in non-steady state. The effective length or tortuosity factor of isotopologue movement in leaves is unknown and, therefore, is a fitted parameter in the model. We compared the advection-diffusion model to previously published data sets for Lupinus angustifolius and Eucalyptus globulus. Night-time stomatal conductance was not measured in either data set and is therefore another fitted parameter. The model compared very well with the observations of bulk mesophyll water during the whole diel cycle. It compared well with the enrichment at the evaporative sites during the day but showed some deviations at night for E. globulus. It became clear from our analysis that night-time stomatal conductance should be measured in the future and that the temperature dependence of the tracer diffusivities should be accounted for. However, varying mesophyll water volume did not seem critical for obtaining a good prediction of leaf water enrichment, at least in our data sets. In addition, observations of single diurnal cycles do not seem to constrain the effective length that relates to the tortuosity of the water path in the mesophyll. Finally, we showed when simpler models of leaf water enrichment were suitable for applications of leaf water isotopes once weighted with the appropriate gas exchange flux. We showed that taking an unsuitable leaf water enrichment model could lead to large biases when cumulated over only 1 day.


Asunto(s)
Eucalyptus/metabolismo , Lupinus/metabolismo , Modelos Biológicos , Agua/metabolismo , Difusión , Hojas de la Planta/metabolismo , Agua/química
16.
Nature ; 415(6872): 626-30, 2002 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11832942

RESUMEN

Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface-atmosphere CO2 fluxes from an intercomparison of atmospheric CO2 inversion models (the TransCom 3 project), which includes 16 transport models and model variants. We find an uptake of CO2 in the southern extratropical ocean less than that estimated from ocean measurements, a result that is not sensitive to transport models or methodological approaches. We also find a northern land carbon sink that is distributed relatively evenly among the continents of the Northern Hemisphere, but these results show some sensitivity to transport differences among models, especially in how they respond to seasonal terrestrial exchange of CO2. Overall, carbon fluxes integrated over latitudinal zones are strongly constrained by observations in the middle to high latitudes. Further significant constraints to our understanding of regional carbon fluxes will therefore require improvements in transport models and expansion of the CO2 observation network within the tropics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA