Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 632(8024): 336-342, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085613

RESUMEN

The global retreat of glaciers is dramatically altering mountain and high-latitude landscapes, with new ecosystems developing from apparently barren substrates1-4. The study of these emerging ecosystems is critical to understanding how climate change interacts with microhabitat and biotic communities and determines the future of ice-free terrains1,5. Here, using a comprehensive characterization of ecosystems (soil properties, microclimate, productivity and biodiversity by environmental DNA metabarcoding6) across 46 proglacial landscapes worldwide, we found that all the environmental properties change with time since glaciers retreated, and that temperature modulates the accumulation of soil nutrients. The richness of bacteria, fungi, plants and animals increases with time since deglaciation, but their temporal patterns differ. Microorganisms colonized most rapidly in the first decades after glacier retreat, whereas most macroorganisms took longer. Increased habitat suitability, growing complexity of biotic interactions and temporal colonization all contribute to the increase in biodiversity over time. These processes also modify community composition for all the groups of organisms. Plant communities show positive links with all other biodiversity components and have a key role in ecosystem development. These unifying patterns provide new insights into the early dynamics of deglaciated terrains and highlight the need for integrated surveillance of their multiple environmental properties5.


Asunto(s)
Biodiversidad , Ecosistema , Calentamiento Global , Cubierta de Hielo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Cubierta de Hielo/microbiología , Plantas/microbiología , Suelo/química , Microbiología del Suelo , Temperatura , Factores de Tiempo , Código de Barras del ADN Taxonómico , Microclima
2.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581206

RESUMEN

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Asunto(s)
Biodiversidad , Cubierta de Hielo , Micorrizas , Micorrizas/fisiología , Cubierta de Hielo/microbiología , Suelo/química , Microclima , Microbiología del Suelo
3.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273541

RESUMEN

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Asunto(s)
Ecosistema , Nematodos , Animales , Suelo , Cubierta de Hielo , Biodiversidad
4.
Mycorrhiza ; 34(1-2): 107-117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151658

RESUMEN

The Andean paramo, hereafter "paramo", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation. Previous findings also suggest that non-(NM) and facultatively mycorrhizal (FM) species predominate over obligatory mycorrhizal (OM) species at high elevations. However, these expectations have never been tested outside of the northern temperate zone. We addressed the distribution and environmental drivers of plant mycorrhizal types (AM, ECM and ERM) and statuses (NM, FM and OM) along the paramo's elevational gradient. We used vegetation plots from the VegParamo database, climatic and edaphic data from online repositories, and up-to-date observation information about plant mycorrhizal traits at species and genus level, the latter being proposed as hypotheses. AM plants were dominant along the entire gradient, and ERM plants were most abundant at the lowest elevations (2500-3000 m). The share of FM plants increased and that of OM plants decreased with elevation, while NM plants increased above 4000 m. Temperature and soil pH were positively related to the abundance of AM plants and negatively to ERM plants. Our results reveal patterns that contrast with those observed in temperate northern-hemisphere ecosystems.


Asunto(s)
Micorrizas , Simbiosis , Ecosistema , Plantas , Biodiversidad , Suelo , Microbiología del Suelo
5.
Plants (Basel) ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732486

RESUMEN

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

6.
Nat Plants ; 10(2): 256-267, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38233559

RESUMEN

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (ß-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total ß-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.


Asunto(s)
Cubierta de Hielo , Plantas
7.
PeerJ ; 6: e4786, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868254

RESUMEN

BACKGROUND: The páramo is a high-elevation biogeographical province in the northern Andes, known for its great biodiversity and ecosystem services. Because there have been very few biogeographic studies encompassing the entire province to date, this study aimed at conducting a phytogeographical regionalisation of the páramo. Specifically, (1) clustering analyses were conducted to identify the main phytogeographical units in the three altitudinal belts: sub-páramo, mid-páramo and super-páramo, and examine their diagnostic flora, (2) an ordination complemented the geo-climatic characterization of the obtained units and (3) a hierarchical classification transformation was obtained to evaluate the relationships between units. METHODS: The study area included the entire Andean páramo range in northern Peru, Ecuador, Colombia and Venezuela. The analyses were based on 1,647 phytosociological plots from the VegPáramo database. The K-means non-hierarchical clustering technique was used to obtain clusters identifiable as phytogeographical units, and the Ochiai fidelity index was calculated to identify their diagnostic species. A principal component analysis was conducted to obtain the geo-climatic characterization of each unit. Finally, the relationships between clusters were traced using a hierarchical plot-based classification. RESULTS: Fifteen clusters were obtained, 13 natural and two artificial, of which two represented the sub-páramo, nine the mid-páramo and four the super-páramo. Even though data representativeness was a potential limitation to segregate certain sub-páramo and super-páramo units, the overall bioregionalisation was robust and represented important latitudinal, altitudinal and climatic gradients. DISCUSSION: This study is the first to bioregionalise the páramo province based on a substantial widely distributed biological dataset, and therefore provides important novel scientific insight on its biogeography. The obtained phytogeographical units can be used to support further research on the páramo at smaller scale and on the humid Neotropical high-elevation ecosystems at broader-scale. Finally, several units were highlighted in our results as particularly worthy of further scientific and conservation focus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA